COMIMONWEALTH OF KENTUCKY

BEFORE THE PUBLIC SERVICE COMMISSION

RECEIVED

AUG 192011
PUBLIC SERVICE COMMISSION
IN THE MATTER OF:

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION FOR CERTIFICATE OF PUBLIC CONVENIENCE AND NECESSITY

CASE NO.
2011-00163

NOTICE OF COMPLIANCE

Applicant, Taylor County Rural Electric Cooperative Corporation, by counsel, hereby gives Notice of its compliance with the Commission's Order entered herein on August 8, 2011, by filing an original and seven (7) copies of the documents, including three (3) copies of maps which are a part of the long-range plan, and information required by the subject Order.

DATED this $19^{\text {th }}$ day of August, 2011.

SPRAGENS \& HIGDON, P.S.C. Attorneys at Law 15 Court Square - P. O. Box 681
Lebanon, (270) 692-3141
Telephone: (270) 692-3141

RECEVED

AUG 192011
PUBLIC SERVICE COMMISSION

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION P O BOX 100 CAMPBELLSVILLE, KY 42719

ITEM 1

TAYLOR COUNTY RECC
POBOX 100
CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 1

Copies of 2011 Long Range System Study are provided.
Witness available: Mike Skaggs

TAYLOR COUNTY
 RURAL ELECTRIC COOPERATIVE CORPORATION
 KENTUCKY 23 TAYLOR CAMPBELLSVILLE, KENTUCKY
 2011 LONG RANGE SYSTEM STUDY

February 2011

Prepared by:

Patterson \& Dewar Engineers, Inc. P.O. Box 2808, Norcross, Georgia 30091 850 Center Way, Norcross, Georgia 30071
Phone: 770-453-1410 Fax: 770-453-1411

Patterson $\&$ Dewar Engineers, Inc.
Hood a Patterson \& Dewar, Inc.

February 28, 2011

Taylor County RECC
625 W. Main Street
Campbellsville, Kentucky 42718

RE: 2011 Long Range System Study

Gentlemen:
We submit herewith our study of your primary electric distribution system. In this study and report, consideration has been given to future consumers and their power requirements, power source locations, type of distribution line, line capacity, distribution voltage and voltage regulation.

From the conclusions developed in this study the following items are stressed:

- A future system is estimated to serve approximately 33,064 total consumers with the residential consumers using an average of $1,150 \mathrm{kWh}$ each, giving a future system peak demand of approximately 250 MW . A total of approximately $\$ 120,514,386$ of additional capital investment is estimated.
- The preferred plan of the future system indicates that six new distribution substations will be required: Pierce, Cantown, Log Church, Sparksville, Saloma 2, and Bloyd's Crossroads. Four existing substations will require cooling fans for increased capacity.
- The distribution system will remain $7.2 / 12.47 \mathrm{kV}$.
- It is recommended that an annual review of this Long Range System Study be made and Construction Work Plans be coordinated to detail new plant required to serve load growth only as it develops.

We believe that adoption of the program recommended in this report will serve adequately as a guide from which to plan the development of your electric distribution system.

Sincerely,

Patterson \& Dewar Engineers, Inc.

Gary E. Grubbs, P.E. Client Engineer

KENTUCKY COOPERATIVES :
 PATTERSON \& DEWAR ENGINEERS, INC. ENGINEERS - SURVEYORS

3 Jackson EC - McKee
18 Meade County RECC - Brandenburg
20 Jackson Purchase EC - Paducah
21 Salt River ECC - Bardstown
23 Taylor County RECC - Campbellsville
26 Pennyrile Electric - Hopkinsville
27 Inter-County Energy CC - Danville
30 Shelby EC - Shelbyville
34 Farmers RECC - Glasgow
35 Warren RECC - Bowling Green
37 Owen EC - Owenton

38 Hickman-Fulton RECC - Hickman
49 Clark EC - Winchester
50 West Kentucky RECC - Mayfield
51 Nolin RECC - Elizabethtown
52 Fleming-Mason EC - Flemingsburg
54 South Kentucky RECC - Somerset
56 Licking Valley RECC - West Liberty
57 Cumberland Valley Electric - Gray
58 Big Sandy RECC - Paintsville
61 Grayson RECC - Grayson
64 Blue Grass Energy ECC - Nicholasville
65 Kenergy Corp - Henderson

TABLE OF CONTENTS

PAGE
LETTER OF TRANSMITTAL AND ENGINEERING CERTIFICATION i
GENERAL COOPERATIVE LOCATION MAP ii
TABLE OF CONTENTS - TEXT iii
TABLE OF CONTENTS - EXHIBITS \& APPENDICES iv
I. INTRODUCTION 1
II. PURPOSE OF REPORT 2
III. SUMMARY OF REPORT AND RECOMMENDATIONS 3
IV. ANALYSIS OF EXISTING SYSTEM AND BASIC DATA 4
A. INTRODUCTION 4
B. PURPOSE OF ANALYSIS 4
C. SUMMARY, CONCLUSION, AND RECOMMENDATIONS 4
D. SYSTEMGROWTIIPATTERNS 4
E. CAPACITY OF EXISTING SYSTEM. 5
F. ENVIRONMENTALLY SENSITIVE AREAS 5
G. ADEQUACY OF BASIC DATA 5
H. LONG-RANGE DEMAND LEVEL 6
I. AREA LOAD DENSITY AND GROWTH POTENTIAL 6
J. SPECIAL LOADS 6
K. SERVICE RELIABILITY 6
L. SYSTEM DESIGN GUIDELINES 7
M. Other Criteria 7
N. Financial Criteria 8
O. AsSumptions. 8
P. FACILITIES AND EQUIPMENT 9
Q. EXPLORATORY PLANS 9
R. Plan SElECTION. 10
S. THE RECOMMENDED PLAN 11
T. Alternate Plans Reviewed 11
V. CONCLUSION 12

TABLE OF CONTENTS

EXHIBITS

EXHIBIT 1 System Statistical Data
EXHIBIT 2.
3 . Economic Parameters and Cost Estimates EXHIBIT 3EXHIBIT 4

\qquad
Consumer Outage Summary
EXHIBIT5.RUS Fixed Charge Summary
EXHIBIT 6

\qquad
Summary of Total Plant Investment
EXHIBIT 7.
Summary of Estimated Capital Additions to Distribution Plant
EXHIBIT 8 8.................. Summary of Estimated System Distribution Improvement Costs
EXHIBIT 9 9.

\qquad
Cost Estimates, Distribution Line Construction EXHIBIT 10 10

\qquad
Cost Estimates, Transmission Facilities
EXHIBIT 11 12

\qquad
Cost Estimates, Substations
EXHIBIT 13 13.
14
4...............................Cost Estimates, Miscellaneous Distribution Equipment EXHIBIT
15
Cost Estimates, Poles EXHIBIT 16
Estimated Distribution Plant Investment Charts
EXHIBIT 17 17.
Economic Comparisons of Plans Reviewed
EXHIBIT 18 18.
Sensitivity Analysis
EXHIBIT 19 Conductor Life Cycle Analysis
20System Design and Operational Criteria
MAPS*
MAP 1 - Existing January 2010 System
MAP 2 - Proposed Winter 2035-36 System - Load Level 5

* Map provided for Preferred Plan G only.

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION
 Kentucky 23 Taylor Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

February 2011

I. INTRODUCTION

This report details the results of an engineering analysis of the future direction of the Taylor County Rural Electric Cooperative (TCRECC) electric distribution system. The study examined the existing load and growth patterns and projected size, configuration, and characteristics of the system required to serve the anticipated 1.6 times current peak load by 2035. From this projected load the needs and configuration of the system were estimated. Various alternative methods of serving this anticipated future load were developed and compared. A "One Ownership" present worth analysis was made to determine the preferred long-range plan. This report contains a brief discussion of the exploratory plans and a more detailed analysis of the intermediate levels of the preferred plan, as well as system maps, cost estimates and other necessary engineering background studies.

The corporate office of Taylor County Rural Electric Cooperative Corporation is located in Campbellsville. The cooperative provides electric service to a portion of the central most part of Kentucky. The service area encompasses generally the rural areas around the small towns of Campbellsville, Columbia, and Greensburg. TCRECC provides electric service to rural homes, farms, villages, and small commercial and industrial consumers in Adair, Casey, Green, and Taylor Counties. The area generally consists of significant rolling hills, some rocky, rough terrain and with grazing lands along small streams and tributaries. The chief sources of income are from general farming, timber and paper products, dairy operations, nurseries and varied small industries. Steady growth is being experienced around the small cities and towns with modest growth in the remaining rural areas.

The Commonwealth of Kentucky has territorial legislation, establishing the areas to be served by the various utility companies.

Electric power is purchased at the wholesale rate from East Kentucky Power Corporation (EKPC) at $7.2 / 12.47 \mathrm{kV}$ from 15 substations. EKPC has ownership of all substations.

II. PURPOSE OF REPORT

The principal objectives of this LRSS are two-fold-to determine the most economical approach the system should take in the future and to establish the capital required to accomplish this plan. The existing system is analyzed and load growth patterns are identified by TCRECC personnel which allow a determination to be made of the system load requirements for approximately 25 years in the future. Then, a distribution system with a number of alternatives is designed which can adequately serve the anticipated load from an electrical standpoint. The electrically equivalent alternatives are compared on an economic basis to identify the most cost-effective or "Preferred Plan". A detailed analysis of this plan is then made to determine the method by which a smooth transition can occur from the base system to the Preferred Long-Range System.

When these objectives are fulfilled, the Study becomes a valuable planning tool in providing a framework for the construction of the future distribution system. Load centers are identified which may not be obvious in the existing, developing system. Ultimate circuit, substation, and transmission line loading are provided against which current construction may be measured. Potential load and voltage drop problems can be recognized and corrected before they become critical. Thus, the Cooperative's management and engineering personnel can take a proactive role in the system development by implementing improvements that interact together to reach a desired goal, as opposed to reacting to present-day problems. Without this ability the system may experience many isolated improvements which do not compliment each other and may even be counter-productive.

From this analysis, the most practical and economic line designs can be determined for serving future loads while maintaining high quality service to the customer. A goal of this study is to develop a systematic schedule for developing major facilities in order to meet anticipated future system requirements, and to provide an idea of future capital that will be needed to serve the future system. This, in turn, makes this study a valuable management guide for financial planning and decision-making.

III. SUMMARY OF REPORT AND RECOMMENDATIONS

This electric distribution system study has projected the long-range loads for Taylor County RECC. Input was solicited from the recent 2010 EKPC Load Forecast (LF) and TCRECC engineering, operating, and management personnel. These projections used in this study are based on the 2010 Load Forecast.

The TCRECC electric system is forecast to serve approximately 33,064 consumers and have a probable winter non-coincident peak system demand of approximately $250,000 \mathrm{~kW}$ for the winter 2035-36. This represents a 1.0 percent per year increase in customer growth and about 1.8 percent per year increase in system demand over the previous system non-coincident peak.

The number of delivery points serving TCRECC is expected to increase from 15 to 21 over the study period. Distribution voltage will remain $7.2 / 12.47 \mathrm{kV}$. To have adequate plant based on the projections in this study, it is estimated that the total electric distribution plant will grow from a present value of $\$ 62,234,331$ in 2009 to a future value of approximately $\$ 182,748,717$ in 2035 . This results in a compound growth rate of approximately 4.23 percent per year. A summary of the total plant investment showing the historical as well as the projected year-by-year increases can be found in Exhibit 6 . A chart showing this information on distribution plant investment can also be found in Exhibit 16.

Exhibit 3 summarizes the basis for the report including the basic economic criteria used. The economic results also include a sensitivity analysis (Exhibit 18) varying the parameters of load growth, capital and energy inflation, and present worth from the study criteria used. The results show that the Preferred Plan will be the most economic choice.

From the results, Plan G proved to be the most economical plan and was identified as the preferred plan among the seven plans compared. Exhibit 17 summarizes the comparative results.

Exhibits 6 through 15 detail the particulars of the preferred plan. Total plant investment is summarized therein. Cost estimates for substation and other distribution plant are included after being allocated by years. Transmission line (T/L) construction is listed by year with costs estimated in this study. EKPC will build and own all transmission line, and the costs are not included towards TCRECC's electric plant.

IV. ANALYSIS OF EXISTING SYSTEM AND BASIC DATA

A. Introduction

The January 2010 system configuration was used as the basis for the LRSS. The distribution peak demand in January 2010 was $135,154 \mathrm{~kW}$ when the system served approximately 25,285 consumers on approximately 3,183 miles of distribution line. Even though the 2009 peak was higher, the 2010 configuration was used because of recent system upgrades and customer data. This load is currently served through 15 distribution substations.

B. Purpose of Analysis

Based on this configuration, individual consumer billing information was used to assign load to individual line sections. The load was allocated using Taylor County RECC substation billing data and feeder measurements. These allocated loads were used to run a voltage drop analysis, which was reviewed with TCRECC engineering and operating persomel to confirm the loading conditions with their knowledge of the system characteristics. The system model was determined to be an adequate model of the present system and is used as the base system in the study. The general condition of the existing electrical plant is discussed and areas are defined where existing conditions do not meet criteria. These problems are taken into account when planning future systems.

C. Summary, Conclusion, and Recommendations

In 2011, a Construction Work Plan (CWP) was developed for the years 2011 through 2013 using the results of this LRSS. Necessary construction was identified that would be needed during these years to satisfactorily handle the anticipated loading for this period. The major line construction concerns are overloaded single-phase lines requiring multi-phasing and the upgrading of several main feeders to larger conductors.

D. System Growth Patterns

Taylor County RECC is located in the central portion of Kentucky and serves members in four counties. Statutes of the Kentucky State Legislature established the electric service area for TCRECC. There are presently no anticipated changes to the currently assigned electric service area.

The service area encompasses generally the rural areas around the small towns of Campbellsville, Columbia, and Greensburg. Steady growth is being experienced around the small cities and towns with modest growth in the remaining rural areas.

E. Capacity of Existing System

The losses for the TCRECC system are in line with the RUS Bulletin 45-4 for a system of this size. The average system losses for the past 5 years are 5.4 percent and can be seen in Exhibit 1 . Losses are projected to average 5.4 percent over the next 20 years.

The service capacity for present loads is adequate for the most part. Total installed substation capacity in 2010 was 256 MVA. This compares to a winter peak to present of 154 MW. All substations are below 80% capacity and in line with the limits established by the System Design Criteria found in Exhibit 20.

The TCRECC electric system plant is maintained in satisfactory operating condition. From the 2009 Form 7, the five year consumer outage average is 415.31 minutes (6.92 hours) per consumer per year, which is well above RUS's guideline of 5.0 hours per consumer per year. For 2009, 1067.23 outage minutes per consumer were attributed to a major storm. Excluding this major storm, the five year average is 201.86 minutes (3.36 hours) per consumer per year.

Taylor County RECC's O\&M expenses for the previous five years are summarized in Exhibit 5. The fiveyear average is approximately 5.33 percent of total distribution plant. The five-year average total Annual Fixed Charge Rate, not included O\&M, as a percentage of total distribution plant was 9.99 percent and can be found in this exhibit.

F. Environmentally Sensitive Areas

TCRECC staff is knowledgeable of areas that may be of concern to envirommental and ecological issues. There are no sensitive areas of concern that will be affected by construction proposed in this study.

G. Adequacy of Basic Data

The loading conditions calculated were based on peak consumer energy usage per line section. TCRECC engineering personnel and Patterson \& Dewar Engineers provided the line section assignments and energy data. For the most part the data provided appeared to be excellent. Metered peak substation loads and power factors conformed extremely well to calculated loading conditions for the existing system.

These loads were reviewed with the engineering and operating staff of TCRECC. This data is considered to be a good representation of the current system conditions as well a good basis for projecting future system conditions.

H. Long-Range Demand Level

This long-range engineering plan is completed in accordance with RUS Bulletin 1724D-101A entitled Electric System Long-Range Planning Guide. The system is expected to experience approximately 1.6 times the past system peak demand in 25 years. This demand magnitude is sufficient to require capacity increases in major system components. In this study, the system is designed to support the load and time frame projections outlined in the load forecast. Not only are the twenty-four year projections outlined in this Plan, but intermediate levels are addressed as well. The five load levels are identified and outlined per the following schedule.

| Load
 Level
 1 | Total
 Consumers | Peak
 Demand (MW) | Year |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 26,298 | 163 | $2013 / 14$ |
| 3 | 27,205 | 180 | $2016 / 17$ |
| 4 | 28,467 | 206 | $2020 / 21$ |
| 5 | 31,273 | 242 | $2029 / 30$ |
| | 33,064 | 250 | $2035 / 36$ |

I. Area Load Density and Growth Potential

Input was solicited from Taylor County RECC's engineering staff to identify various growth areas of the system. The discussion with the cooperative's staff resulted in development of the LRSS growth rates.

J. Special Loads

Besides the classification of the areas above, locations were identified where loads are expected to develop. TCRECC's engineering personnel were knowledgeable of areas where new residential construction is anticipated.

K. Service Reliability

In designing the long-range plan, and in particular the intermediate plans, emphasis was placed on selecting projects which would ensure continued high quality service and reliability. This study does not attempt to design future transmission facilities, which should be addressed by EKPC.

In addition to transmission and substation reliability, distribution reliability is also important. The distribution lines and equipment need to be kept in good working condition. This includes the replacement of obsolete equipment including older high loss transformers, deteriorated poles, and old, brittle copper conductor. The goal is to continue to develop a distribution system that is economical yet reliable while maintaining as low an $O \& M$ expense as is technically and economically feasible.

L. System Design Guidelines

The System Design Guidelines, Exhibit 20, was used as a guide for improving and uprating facilities. The construction standards outlined in the guidelines were used as a basis for the current Construction Work Plan and remain valid for future construction and improvements. The guidelines were strictly adhered to in the design and development of the preferred plan.

M. Other Criteria

In addition to the system design guidelines, the Conductor Life Cycle Analysis (Exhibit 19) was used to determine the appropriate conductor size to use when re-conductoring existing lines. By using the current cost of construction and economic parameters, the amatysis will give the most economicat conductor to use based on the combination of original costs, O\&M costs, losses, and TCRECC's standard sizes of conductor. The primary conductor sizes recommended in this study are $1 / 0 \mathrm{ACSR}, 336 \mathrm{ACSR}$, and 477 ACSR.

All exploratory plans were based on winter peaking conditions and a maximum of eight volts drop from the substation without line regulation for the long range load level. This ensured that each plan had basically the same capacity regardless of voltage class, conductor size, and number of ultimate delivery points or main feeders. However, in accordance with the latest RUS Bulletin 1724D-101A, once the preferred plan was selected, the ultimate design was planned with a maximum of eight volts drop with one bank of line regulation for the intermediate levels. Virtually all distribution systems use line regulation to maintain voltage on the extremities of primary lines until major improvements can be justified. This is a much more realistic and practical approach for developing a distribution plant to meet future needs.

N. Financial Criteria

The Long Range Plan was chosen on the basis of two factors: one, the most reliable service possible, and two, the most economical. When looking at economics, the total costs of the plans are compared by the One Ownership method. This approach adds the costs of system improvements for both the power supplier and the distributor.

In developing a preferred plan from the seven alternate plans, a present worth analysis was compiled. A present worth analysis is most frequently used to determine the present value of money receipts and disbursements. This method provides an easy way to compare electrically equivalent alternatives by resolving their economic consequences at the present time.

This analysis was applied to both the distributor and the supplier under the One Ownership concept. These economic analyses use the cost of improvements allocated to their respective years, inflated, and returned to a present worth value for both distributor and supplier. These costs include distribution line improvements, substation improvements, transmission improvements, delivery point charges, and losses. Costs to both TCRECC and EKPC were broken out for each plan for comparative reasons. If two plans resulted in approximately the same One Ownership costs then the plan that spread the costs more evenly between distributor and supplier was considered the preferred approach.

O. Assumptions

The results and final recommendations of this study are based on a number of key economic parameters jointly agreed upon by TCRECC, EKPC, and Patterson \& Dewar Engineers. The chart shown below summarizes the parameters and quantities used.

Assumptions	Power Distributor		Power Supplier
Energy Cost/ kWh	$\$ 0.08$		$\$ 0.08$
Present Worth Interest Rate	6.90%	8.97%	
Annual Fixed Charge	9.99%	-	
Annual Fixed Charge (Substations)	-	8.55%	
Annual Fixed Charge (Transmission)	-	10.14%	
Distribution O\&M Costs (\%)	5.33%	-	
Substation O\&M Costs (\%)	-	2.00%	
Transmission O\&M Costs (\%)	-	5.40%	
Inflation Rate	3.00%	3.00%	
Energy Inflation Rate	2.50%	2.50%	

A sensitivity analysis was performed on three of the seven plans. The results of the analysis are shown in Exhibit 18. The results of these variations conclude that Plan G is a solid plan to follow regardless of the economic conditions.

P. Facilities and Equipment

Facilities and equipment included in this study are provided by both supplier and distributor, and are categorized and studied individually and together under the One Ownership concept. All distribution lines and related equipment are owned by Taylor County RECC, and substations and transmission lines are owned by EKPC. For the sake of convenience in the analysis process, all equipment common between plans were omitted. TCRECC coordination closely with EKPC concerning the LRSS, and EKPC's input added greatly to the final options for the LRSS.

Q. Exploratory Plans

From the load projections listed in the planning criteria above, seven exploratory plans were designed using sound engincering guidelines. These plans are listed below.

PLAN DESCRIPTIONS

PLAN A	Uprate Existing Substations.
PLAN B	New Sparksville substation added.
PLAN C	Same as Plan B, but new Bloyd's Crossroads substation added.
PLAN D	Same as Plan C, but new Saloma 2 substation added.
PLAN E	Same as Plan D, but new Cantown substation added.
PLAN F	Same as Plan E, but new Log Church substation added.
PLAN G	Same as Plan F, but new Pierce substation added.

R. Plan Selection

From these basic options, substation load centers were established. Economics for plant investment to serve the 250 MW load level was calculated. In order to have a One Ownership comparison, the transmission and substation costs for EKPC were included in each plan. A comparison of the present worth analysis for each plan resulted in the most economical approach to serve the future system needs. The results are shown in Exhibit 17. The chart shown below summarizes the present worth costs for the different options.

PRESENT WORTH (2011 Dollars)

Plan	$\frac{\text { One Ownership }}{\text { Concept }}$	Preferred Plan Cost Difference	Rank
A	\$43,471,132	\$2,961,591	7
B	\$42,386,178	\$1,876,637	6
C	\$42,210,233	\$1,700,692	5
D	\$41,928,119	\$1,418,578	4
E	\$40,706,815	\$197,274	3
F	\$40,550,088	\$40,547	2
G^{*}	\$40,509,541	\$0	1

* Plan G chosen as the Preferred Plan based on economic and reliability factors

It must be noted that the aforementioned costs do not reflect the total plant required to serve the longrange load level. Expenses common to all plans have been ignored in the comparisons. Also, the above figures represent 2011 costs inflated at 3.0 percent per year. As the table indicates, plan G would result in the most economical approach to serve the future load.

S. The Recommended Plan

The recommended Preferred Plan calls for the following new substations: Pierce (2016), Cantown (2019), Log Church (2021), Sparksville (2024), Saloma 2 (2026), and Bloyd's Crossroads (2027). In addition, the following substations will require the addition of power transformer cooling fans: Coburg (2011), Creston (2020), East Campbellsville (2028), and Greensburg (2034).

New Substation Required		Existing Substation Relieved
	Pierce	
Cantown		Phil
Log Church Comer		
Sparksville		Garlin
Saloma 2		West Columbia
Bloyd's Crossioads		Mile Lane
		Summersville

In addition to preventing the uprating of an existing substation, building the new substation results in much less heavy conductor construction and far greater service reliability and voltage.

Due to the abundance of 69 kV transmission line and reasonable substation construction costs, the system voltage for TCRECC will remain $7.2 / 12.47 \mathrm{kV}$ for the study period. Taylor County RECC presently does not install 14.4 kV insulators, dual voltage comstmer transformers, or own any equipment that is rated for working energized 25 kV lines. The management and staff of Taylor County RECC, as well as P\&D, concur that maintaining a $7.2 / 12.47 \mathrm{kV}$ system based on the current and projected economics is the preferred option.

Exhibits 10,11 and 12 itemize the transmission and distribution system construction and substations of the Preferred Plan. The recommended distribution construction and new substation locations can be seen on Map 2.

T. Alternate Plans Reviewed

Plan F - Alternate Plan
This plan differs from the preferred plan in that the McKinney Corner substation is uprated to an 11.2 MVA transformer instead of the addition of the Pierce substation. If the Pierce substation is not added, service reliability will be compromised and new heavy conductor will be needed to serve load in the area. However, the other five new substations are recommended for service in this plan.

V. CONCLUSION

This study is intended as a guide to anticipated future system growth and development. Adherence to the construction guidelines set forth will enable the Cooperative to serve the loads forecast in an efficient, orderly, economical, and environmentally acceptable manner. This is true as long as the conditions and assumptions upon which this study is based remain valid. Therefore, this study should be reviewed before the completion of any new Construction Work Plan. The review should include all of the following:

- Are customer and kW load projections in line with present growth patterns?
- Have any new growth pockets or areas developed that are not included in this study?
- Do the cost estimates and system plant levels represent present economic conditions considering inflation and are they allocated reasonably?
- Are the assumed economic parameters of inflation, interest rates, energy costs, etc., representative of present day conditions?

A negative answer to any of the above questions implies that this study may need to be amended or even redone. A re-evaluation is normally required each seven to ten years. The real value in system planning lies in keeping this Long Range System Study on an up-to-date basis and far enough ahead of year-byyear construction to point out the most practical and economic direction for future expansion.

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION Kentucky 23 Taylor Campbellsville, Kentucky

SYSTEM STATISTICAL DATA *

Year	Total Consumers (Annual Average)		kWh per Consumer Residential (Monthly Average)		Net Distribution Plant (millions of dollars)		AnnualSystem LossesTotal System		AnnualSystem LossesDistribution Only +Actual Projected		Annual Load Factor Total System		AnnualLoad FactorDistribution Only +		Total Non-Coincident Peak Demand							
			Historical Peak Demand	Summer Extreme 20\%			Winter Normal Weather	Winter Extreme 10\%														
2000	21,895				1,058				37.27		6.86\%		6.86\%		46.2\%		46.2\%		94,800			
2001	22,317		1,130		39.49		4.92\%		5.57\%		46.7\%		41.2\%		114,800							
2002	22,827		1.111		41.33		5.74\%		6.64\%		51.3\%		44.3\%		110,400							
2003	23,231		1,132		43.23		4.71\%		5.54\%		45.5\%		38.7\%		128,100							
2004	23,646		1.114		45.66		4.72\%		5.66\%		48.2\%		40.2\%		127,400							
2005	24,089		1,140		48.08		5.37\%		6.24\%		48.7\%		41.9\%		127,565							
2006	24,483		1,114		50.40		4.88\%		5.62\%		48.9\%		42.5\%		123,047							
2007	24,792		1,151		56.39		5.37\%		6.25\%		47.2\%		40.5\%		137,928							
2008	25,078		1.130		60.58		5.96\%		6.74\%		44.3\%		39.2\%		141,570							
2009	25,285		1,144		62.23		2.54\%		2.89\%		39.7\%		34.9\%		154,562							
2010		25,456		1,152		64.79		5.40\%		6.11\%					135,154							
2011		25,727		1.153		67.55		5.40\%		¢. 12%		44.3\%		39.0\%		120.964	150,030	164,121				
2012		26,008		1,150		70.61		5.40\%		\$.14\%		44.4\%		39.1\%		121,670	150,840	165,080				
2013		26,298		1,140		73.53		5.40\%		¢.16\%		44.2\%		38.7\%		122,747	152,550	166,942				
2014		26,595		1,136		77.50		5.40\%		¢.18\%		44.1\%		38.6\%		123,874	154,140	168,687				
2015		26,898		1,130		81.60		5.40\%		\$. 20%		44.1\%		38.5\%		124,913	155,470	170,176				
2016		27,205		1,128		85.86		5.40\%		¢. 21%		44.3\%		38.5\%		125,841	156,650	171,518				
2017		27,517		1,124		89.79		5.40\%		\$.23\%		44.1\%		38.2\%		127,471	158,730	173,762				
2018		27,832		1,126		93.87		5.40\%		\$.25\%		44.1\%		38.1\%		129,040	160,720	175,919				
2019		28,148		1,128		98.09		5.40\%		\$.27\%		44.1\%		38.0\%		130,590	162,860	178,226				
2020		28,467		1,128		102.46		5.40\%		\$.27\%		44.4\%		38.2\%		133,480	166,020	181,555				
2021		28,784		1,129		106.20		5.40\%		¢. 26%		44.2\%		38.1\%		135,350	168,620	184,324				
2022		29,101		1,128		110.07		5.40\%		¢. 25%		44.2\%		38.2\%		136,780	170,330	186,203				
2023		29,417		1.131		114.08		5.40\%		\$. 24%		44.2\%		38.3\%		138,449	172,490	188,532				
2024		29,733		1,134		118.24		5.40\%		\$.22\%		44.3\%		38.5\%		139,779	174,130	190,339				
2025		30,046		1,136		122.55		5.40\%		¢.21\%		44.2\%		38.4\%		141,778	176,730	193,108				
2026		30,359		1,140		127.02		5.40\%		6.20\%		44.2\%		38.5\%		143,518	178,980	195,524				
2027		30,669		1.143		131.65		5.40\%		6.19\%		44.2\%		38.6\%		145,117	181,110	197,820				
2028		30,975		1,143		136.44		5.40\%		6.18\%		44.3\%		38.7\%		146,195	182,350	199,226				
2029		31,273		1.144		141.41		5.40\%		6.17\%		44.2\%		38.7\%		148,162	184,760	201,798				
2030		31,564		1,150		147.72		5.40\%		6.16\%		44.2\%		38.8\%		149,939	187,090	204,286				

* Projections are taken from the 2010 Load Forecast
** Projections are taken from 2011 Long Range System Study.
+ Excludes the direct served load TGP - Saloma.

Taylor County Rural Electric Cooperative Corporation Kentucky 23 Taylor

Total Consumers

Taylor County Rural Electric Cooperative Corporation
Kentucky 23 Taylor
Residential kWh per Cons. (Monthly Average)

Taylor County Rural Electric Cooperative Corporation
Kentucky 23 Taylor
Net Distribution Plant Investment

Taylor County Rural Electric Cooperative Corporation
Kentucky 23 Taylor
Annual System Losses

EXHIBIT 1

Taylor County Rural Electric Cooperative Corporation
Kentucky 23 Taylor
Annual Load Factor

Taylor County Rural Electric Cooperative Corporation
Kentucky 23 Taylor
Total Non-Coincident Peak kW - Winter

Patterson \& Dewar Engineers

Taylor County Rural Electric Cooperative Corporation
Kentucky 23 Taylor
Total Non-Coincident Peak kW - Summer

Patterson \& Dewar Engineers

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 faylor

Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Substation Loading

Substation		Voltage\qquad	EKPC Capacity (kVA)			January 2010 feak			2013/14	2016/17	2020/21	2029/30	2035/36	Power Factor	LL5PercentLeading Loading	
		Base	Existing Winter	Future Winter	kW	Power Factor	Loading	$\begin{aligned} & \mathrm{LL1} \\ & \mathrm{~kW} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{LL} 2 \\ & \mathrm{~kW} \end{aligned}$	$\begin{aligned} & \text { LL3 } \\ & \mathrm{kW} \end{aligned}$	$\begin{aligned} & \text { LL4 } \\ & \mathrm{kW} \end{aligned}$	$\begin{aligned} & \text { LL5 } \\ & \mathrm{kW} \end{aligned}$				
0	Campbellsville \#1		69-12.47	14.000	18,140	18,140	6.791	91.4\%	41\%	8.255	9,208	10,944	12,451	12,873	99.5\%	71\%
0	Campbellsville \#2	69-12.47	14,000	18,140	18,140	7,697	99.5\%	43\%	9,470	10,549	12,531	14,262	15,501	99.5\%	86\%	
1	Mile Lane	69-12.47	14,000	18,140	18,140	10,057	99.6\%	56\%	12,272	13,586	16,139	11,247	11,629	99.5\%	64\%	
2	Greensburg	69-12.47	11,200	15,720	18,140	8,040	99.8\%	51\%	9,656	10,749	12,768	14,523	15,019	99.5\%	83\%	
3	Summersville	69-12.47	11,200	15,720	15,720	8,621	99.4\%	55\%	10,621	11,500	13,656	9,264	9,293	99.5\%	59\%	
4	McKinney Corner	69-12.47	6,440	8,340	8,340	6,332	99.4\%	76\%	7,864	5,310	6,309	7,176	6,872	99.5\%	83\%	
5	Coburg	69-12.47	11,200	15,720	18,140	9,660	98.7\%	62\%	12.662	14,073	16,746	17,241	16,404	99.5\%	91\%	
6	Columbia	69-12.47	14,000	18,140	18,140	8,859	98.5\%	50\%	10,794	11,893	14,128	16,072	16,620	99.5\%	92\%	
7	Green River Plaza	69-12.47	11,200	15,720	15,720	6,268	98.8\%	40\%	7,612	8,487	10,082	11,473	11,861	99.5\%	76\%	
8	Bass	69-12.47	11,200	15,720	15,720	6,800	99.4\%	44\%	8,536	9,391	11,150	12,679	14,224	99.5\%	91\%	
9	Phil	69-12.47	14,000	18,140	18,140	11,858	98.2\%	67\%	14,559	15,837	11,798	13,417	14,413	99.5\%	80\%	
10	West Columbia	69-12.47	14,000	18,140	18,140	9,595	98.6\%	54\%	11,010	12,450	15,223	10,905	11,612	99.5\%	64\%	
11	Creston	69-12.47	11,200	15,720	18,140	9,729	99.9\%	62\%	11,441	12,646	15,018	17,089	15,150	99.5\%	84\%	
12	East Campbellsville	69-12.47	11,200	15,720	18,140	8,377	99.7\%	53\%	10,370	11,400	13,541	15,402	16,793	99.5\%	93\%	
13	Garlin	69-12.47	11,200	15,720	15,720	9,441	98.8\%	61\%	11.615	12,647	15,017	11,522	11,913	99.5\%	76\%	
14	TGP - Saloma	69-12.47	11,200	15,720	15,720	7,029	99.9\%	45\%	7,000	7,000	7,000	7,000	7,000	99.5\%	45\%	
15	Pierce	69-12.47	11,200	-	15,720	-	-	-	-	3,273	3.888	4,425	5,464	99.5\%	35\%	
16	Cantown	69-12.47	11,200	-	15,720	-	-	-	-	-	7.063	8,036	8,308	99.5\%	53\%	
17	Log Church	69-12.47	11,200	-	15,720	-	-	-	-	-	-	7.483	7,736	99.5\%	49\%	
18	Sparksville	69-12.47	11,200	-	15,720	-	-	-	-	-	-	6,876	7,113	99.5\%	45\%	
19	Saloma 2	69-12.47	11,200	-	15,720	-	-	-	-	-	-	7,139	7,380	99.5\%	47\%	
20	Bloyd's Crossroads	69-12.47	11,200		15,720	-	-	-	-	-	-	6.317	6,822	99.5\%	44\%	
Distribution Only Totais $=$						125,713	99.1\%		156,738	173,000	206,000	235,000	243,000			
System Totals $=$						135,154	99.1\%		163,738	180,000	213,000	242,000	250,000			

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

COST ESTIMATES

(2011 DOLLARS)

DISTRIBUTION		Cost / Mile
$301 / 0 \mathrm{ACSR}$	$=$	\$55,000 per mile
30336 ACSR	$=$	\$85,000 per mile
$3 \varnothing 336$ ACSR Double Circuit	$=$	\$110,000 per mile
30477 ACSR	$=$	\$95,000 per mile
$3 \varnothing 477$ ACSR Double Circuit	$=$	\$120,000 per mile
SUBSTATIONS		
Uprate existing substations:		
$69-12.5 \mathrm{kV}, 15 / 20 / 25$ MVA with 8 feeder bays	$=$	\$900,000
$69-12.5 \mathrm{kV}, 11.2$ MVA doubled-over station (22.4 MVA Base Capacity)	=	\$720,000
Build new substations:		
$69-12.5 \mathrm{kV}, 5 \mathrm{MVA}$	$=$	\$645,000
$69-12.5 \mathrm{kV}, 11.2 / 14.0 \mathrm{MVA}$	=	\$800,000
$69-125 \mathrm{kV}, 15 / 20 / 25 \mathrm{MVA}$	=	\$1,240,000
$69-12.5 \mathrm{kV}, 11.2 / 14.0 \mathrm{MVA}$ doubled-over station (22.4 MVA base capacity)	$=$	\$1,240,000
(138 or 161)/12.5 kV, 12/16/20 MVA	$=$	\$1,355,000
(138 or 161)/12.5 kV, 12/16/20 MVA doubled-over station (24.0 MVA base capacity)	$=$	\$2,460,000
TRANSMISSION		
69kV, 266.8 ACSR Line Cost Per Mile	$=$	\$350,000 per mile
69 kV Tap Structure and Two-Way Air-Break Switch	$=$	\$80,000 each
69 kV Tap Structure and Three-Way Air-Break Switch	=	\$90,000 each
138 kV or 161 kV , 556.5 ACSR Line Cost Per Mile	=	\$450,000 per mile
138 kV or 161 kV Tap Structure and Three-Way Motor-Operated Air-Break Switch	$=$	\$150,000 each

* Substation and transmission costs based on estimates from EKPC dated 12/14/2009.

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

ECONOMIC PARAMETERS AND BASE ASSUMPTIONS

ECONOMIC CRITERIA (2010 BASIS):

	Power Distributor TCRECC Distribution	Power Supplier East Kentucky PC Sub. / Trans.
Losses / kWh (\$)	\$0.0800	\$0.0800 *
Present Worth Interest Rate (\%)	6.90\%	8.97\% *
Annual Fixed Charge (\%) **	9.99\%	-
Annual Fixed Charge (\%) (Transmission) **	-	10.14\% *
Annual Fixed Charge (\%) (Substations) **	-	8.55\% *
Distribution O \& M Costs (\%)	5.33\%	-
Substation O \& M Costs (\%)		2.00\% *
Transmission O \& M Costs (\%)	-	5.40\% *
Inflation Rate (\%)	3.00\%	3.00\%
Energy Inflation Rate (\%)	2.50\%	-
Total Value of Distribution Plant (12/31/09)	\$62,234,331	

* Data provided by East Kentucky Power Cooperative on January 19, 2010.
** Interest, depreciation, taxes, and insurance only.

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

LOADING AND OPTIONS

		System Design Loads	
		Winter Total	
LL1	January 2009 Peak $=$	Peak kW Demand Consumers	
LL2 $2013 / 14$ System $=$	163,562		
LL3	$2016 / 17$ System $=$	180,000	26,298
LL4	$2020 / 21$ System $=$	206,000	27,205
LL4	$2029 / 30$ System $=$	242,000	28,467
	$2035 / 36$ System $=$	250,000	31,273
		1.80%	per year

PLAN OPTIONS FOR EVALUATION:

Plan A No new substations added; system voltage remains 12.5 kV .
Plan B - New Sparksville substation added.
Plan C- Same as Plan B, except new Bloyd's Crossroads substation added.
Plan D- Same as Plan C, except new Saloma 2 substation added.
Plan E- Same as Plan D, except new Cantown substation added.
Plan F- Same as Plan E , except new Log Church substation added.
Plan G- Same as Plan F, except new Pierce substation added.

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION Kentucky 23 Taylor Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

Consumer Outage Hours

(Outage hours per consumer per year)

Outage Cause

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY SUMMARY RUS FIXED CHARGE RATE PROJECTIONS

TOTAL ANNUAL FIXED CHARGE RATE (TIER - Method)

Year	Cost Debt (CD)		TIER	Cost Capital (CC)	Operation Maintenance (O\&M)	Taxes (Tx)	$\begin{gathered} \text { Depreciation } \\ \text { (Dep) } \\ \hline \end{gathered}$	(TFCR)
2005	1.78 \%	x	3.7600	6.69 \%	\% 5.29 \%	0.09%	\% 3.00%	15.07%
2006	1.67 \%	x	3.3663	5.61 \%	\% 5.94 \%	0.09 \%	\% 3.00%	14.64 \%
2007	1.66 \%	\times	3.0155	5.01 \%	\% 5.18 \%	0.10 \%	\% 3.00%	13.28 \%
2008	1.77 \%	x	2.2818	4.04 \%	\% 5.16 \%	0.09%	3.00%	12.29 \%
2009	1.61 \%	x	5.6091	9.05 \%	\% \quad 5.08 \%	0.08 \%	\% 3.00 \%	17.21 \%
Projected	1.70 \%		3.6065	6.08 \%	\% 5.33%	0.09 \%	\% 3.00%	14.50 \%

KEY RATIOS

Year	TIER	Modified TIER	Debt Ratio	Equity Ratio	DSC	Modified DSC	Plant Revenue Ratio
2005	3.7600	3.7600	35.74%	64.26%	3.20	3.20	5.69
2006	3.3663	3.3663	33.48%	66.52%	3.07	3.07	5.64
2007	3.0155	3.0155	33.37%	66.63%	2.35	2.35	6.43
2008	2.2818	1.8728	35.59%	64.41%	2.48	2.24	7.08
2009	5.6091	4.1342	32.42%	67.58%	4.36	$\underline{3.54}$	5.75
Projected	3.6065	3.2297	34.12%	65.88%	3.09	2.88	6.12

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY SUMMARY RUS FIXED CHARGE RATE PROJECTIONS

TOTAL ANNUAL FIXED CHARGE RATE (Goodwin Method) COST OF EQUITY FACTOR

	20.0	ENTER the Capital Retirement Cycle. (Number of Years) ENTER Utility Plant Growth Rate. (\%) Calculated Cost of Equity Factor (\%) (Goodwin Formula) $M=\frac{(1+L)^{\wedge}(K+1)-(1+L)^{\wedge} K}{(1+L)^{\wedge} K-1} \times 100$
	4.82\%	
M	7.90\%	

Cost Equity (CE) = M x Equity Ratio for (Goodwin Method)

Year	Cost Debt (CD)		Cost Equity (CE)	Cost Capital (CC)	Operation Maintenance (O\&M)	Taxes (Tx)	Depreciation (Dep)	(TFCR)
2005	1.78 \%	+	5.08 \%	6.86 \%	5.29 \%	0.09%	3.00%	15.24 \%
2006	1.67 \%	+	5.26 \%	6.92 \%	5.94 \%	0.09%	3.00%	15.95 \%
2007	1.66%		5.27%	6.93%	5.18%	0.10%	3.00%	15.20%
2008	1.77 \%	+	5.09 \%	6.86 \%	5.16 \%	0.09%	3.00%	15.11 \%
2009	1.61 \%	+	5.34 \%	6.95 \%	5.08 \%	0.08 \%	3.00%	15.12 \%
Projected	1.70 \%		5.21 \%	6.90 \%	5.33 \%	0.09%	3.00%	15.32 \%

TFCR = Cost of Capital (CC) + Oper. \& Main. (O\&M) + Taxes (Tx) + Depreciation (Dep)

TAYLOR COUNTRY RURAL ELECTRIC GOOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Summary of Total Plant Investment

Year	KWH PerResidential ConsumerActual \quad Projected		NCP Peak*KW DemandActual Projected		Estimated Electric Plant Additions Distribution	Distrib Plant Inv Actual	ution estment Projected	Dis Plant Inve Actual	tion ent per KW Projected	Di Plant Invest Actual	Consumer Projected	Load Level
2005	1.140		127.565		-	\$ 48,078,849		\$ 377		\$ 1,996		
2006	1,114		123,047		-	\$ 50,404,543		\$ 410		\$ 2,059		
2007	1,151		137,928		-	\$ 56,394,098		\$ 409		\$ 2,275		
2008	1,130		141,570		-	\$ 60,579,775		\$ 428		\$ 2,416		
2009	1,144		154,562			\$ 62,234,331		\$ 403		\$ 2.461		
2010		1,152	135,154		\$ 2,556,733		\$ 64,791,064		\$ 479		\$ 2,545	
2011		1.153		164,121	\$ 2,762,763		\$ 67,553,827		\$ 412		\$ 2,626	
2012		1,150		165,080	\$ 3,056,595		\$ 70,610,422		\$ 428		\$ 2,715	
2013		1,140		166,942	\$ 2,918,419		\$ 73,528,841		\$ 440		\$2.796	LL1
2014		1,136		168,687	\$ 3,968,582		\$ 77,497,423		\$ 459		\$2,914	
2015		1,130		170,176	\$4,107,158		\$ 81,604,582		\$ 480		\$ 3,034	
2016		1,128		171,518	\$ 4,250,571		\$ $85,855,153$		\$ 501		\$ 3,156	LL2
2017		1,124		173,762	\$ 3,937,132		\$ 89,792,285		\$ 517		\$ 3,263	
2018		1,126		175,919	\$ 4,076,556		\$ 93,868,841		\$ 534		\$ 3,373	
2019		1.128		178,226	\$ 4,220,946		\$ 98,089,787		\$ 550		\$ 3,485	
2020		1,128		181,555	\$ 4,369,108		\$ 102,458,895		\$ 564		\$ 3,599	LL3
2021		1.129		184,324	\$ 3,737,403		\$ 106,196,298		\$ 576		\$ 3,689	
2022		1,128		186,203	\$ 3,873,444		\$ 110,069,742		\$ 591		\$ 3,782	
2023		1,131		188,532	\$ 4,013,248		\$ 114,082,990		\$ 605		\$ 3,878	
2024		1,134		190,339	\$ 4, 159,120		\$ 118,242,110		\$ 621		\$ 3,977	
2025		1,136		193,108	\$ 4,309,785		\$ 122,551,894		\$ 635		\$ 4,079	
2026		1.140		195,524	\$ 4,466,372		\$ 127,018,266		\$ 650		\$4,184	
2027		1,143		197,820	\$4,626,761		\$ 131,645,027		\$ 665		\$4,292	
2028		1.143		199,226	\$4,794,058		\$ 136,439,085		\$ 685		\$ 4,405	
2029		1,144		201,798	\$4,967,668		\$ 141,406,753		\$ 701		\$4,522	LL4
2030		1,150		204,286	\$6,313,408		\$ 147,720,161		\$ 723		\$ 4,680	
2031		1,150		206,654	\$ 6,534,410		\$ 154,254,571		\$ 746		\$ 4,841	
2032		1,150		209,049	\$ 6,762,548		\$ 161,017,119		\$ 770	\cdots	\$ 5,006	
2033		1,150		211,472	\$ 6,996,974		\$ 168,014,093		\$ 794		\$ 5,175	
2034		1,150		213,922	\$ 7,241,168		\$ 175,255,260		\$819		\$ 5,349	
2035		1,150		216,402	\$ 7,493,457		\$ 182,748,717		\$844		\$ 5,527	LL5

* 1 -in-10 Extreme Winter

2031 to 2035 load data is estimated from EKPC Load Forecast.

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Summary of Estimated Capital Additions to Distribution Plant*

Year	Peak KW Demand	\qquad	New Construction	Ordinary Replacements	Total Additions to Distribution Plant	Retirements**	Net Plant Additions Less Retirements	Load Level
2010	135,154	\$ 724,520	\$ 1,564,253	\$650,000	\$ 2,938,773	(\$ 382,040)	\$ 2,556,733	
2011	164,121	\$ 833,732	\$ 1,614,334	\$ 727,524	\$ 3,175,590	(\$ 412,827)	\$ 2,762,763	
2012	165,080	\$ 855,731	\$ 1,662,640	\$ 994,957	\$ 3,513,328	(\$ 456,733)	\$ 3,056,595	
2013	166,942	\$ 878,592	\$ 1,713,076	\$ 762,837	\$ 3,354,505	(\$ 436,086)	\$ 2,918,419	LL1
2014	168,687	\$ 2,002,595	\$ 1,773,272	\$ 785,722	\$ 4,561,589	(\$ 593,007)	\$ 3,968,582	
2015	170,176	\$ 2,062,672	\$ 1,848,905	\$809,294	\$ 4,720,871	(\$ 613,713)	\$ 4,107,158	
2016	171,518	\$ 2, 124,553	\$ 1,927,589	\$833,573	\$ 4,885,714	(\$ 635,143)	\$ 4,250,571	LL2
2017	173,762	\$ 1,658,877	\$ 2,007,982	\$858,580	\$ 4,525,439	(\$ 588,307)	\$ 3,937,132	
2018	175,919	\$ 1,708,644	\$ 2,092,714	\$ 884,337	\$ 4,685,696	(\$ 609,140)	\$ 4,076,556	
2019	178,226	\$ 1,759,905	\$ 2, 180,890	\$ 910,867	\$ 4,851,662	(\$ 630,716)	\$ 4,220,946	
2020	181,555	\$ 1,812,702	\$ 2, 271,068	\$ 938,193	\$ 5,021,963	(\$ 652,855)	\$ 4,369,108	LL3
2021	184,324	\$ 963,430	\$ 2,366,096	\$ 966,339	\$ 4,295,866	(\$ 558,463)	\$ 3,737,403	
2022	186,203	\$ 992,333	\$ 2,464,573	\$ 995,329	\$ 4,452,235	(\$ 578,791)	\$ 3,873,444	
2023	188,532	\$ 1,022,103	\$ 2,565,637	\$ 1,025,189	\$ 4,612,929	(\$ 599,681)	\$ 4,013,248	
2024	190,339	\$ 1,052,766	\$ 2,671,887	\$ 1,055,945	\$ 4,780,598	(\$ 621,478)	\$ 4,159,120	
2025	193,108	\$ 1,084,348	\$ 2,781,804	\$ 1,087,623	\$ 4,953,776	(\$ 643,991)	\$ 4,309,785	
2026	195,524	\$ 1,116,880	\$ 2,896,629	\$ 1,120,252	\$ 5,133,761	(\$ 667,389)	\$ 4,466,372	
2027	197,820	\$ 1,150,385	\$ 3,013,872	\$ 1,153,859	\$ 5,318,116	(\$ 691,355)	\$ 4,626,761	
2028	199,226	\$ 1,184,897	\$ 3,137,039	\$ 1,188,475	\$ 5,510,412	(\$716,354)	\$ 4,794,058	
2029	201,798	\$ 1,220,445	\$ 3,265,389	\$ 1,224,129	\$ 5,709,963	(\$ 742,295)	\$ 4,967,668	LL4
2030	204,286	\$ 2,599,415	\$ 3,396,522	\$ 1,260,853	\$ 7,256,791	(\$ 943,383)	\$ 6,313,408	
2031	206,654	\$ 2, 677,397	\$ 3,534,740	\$ 1,298,679	\$ 7,510,816	(\$ 976,406)	\$ 6,534,410	
2032	209,049	\$ 2,757,719	\$ 3,677,686	\$ 1,337,639	\$ 7,773,044	(\$1,010,496)	\$ 6,762,548	
2033	211,472	\$ 2,840,450	\$ 3,824,280	\$ 1,377,768	\$ 8,042,499	$(\$ 1,045,525)$	\$ 6,996,974	
2034	213,922	\$ 2,925,663	\$ 3,978,416	\$ 1,419,102	\$ 8,323,181	(\$1,082,013)	\$ 7,241,168	
2035	216.402	\$ 3,013,433	\$4,138,062	\$ 1,461,675	\$ 8,613,169	(\$1,119,712)	\$ 7,493,457	LL5

*Based on 2011 costs inflated at the annual rate of 3 percent per year.
**Future retirements estimated as 13% of distribution plant additions.

TAYLOR COUNTRY RURAL ELECTRIC GOOPERATIVE CORPORATION
 Kentucky 23 Taylor

Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Summary of Estimated System Distr|bution Improvement Costs*

Year	Peak kW Demand	Distribution Line Construction	Uprating Existing Consumers		Transformer Replacements for 25 kV				Sectionalizing Equipment	Line Voltage Regulators	Line Capacitors	Total Distribution System Improvements	Load Level
2010	135,154	\$ 500.000	\$	25,520	\$	0	\$	0	\$ 105,000	\$ 92,000	\$ 2,000	\$ 724,520	
2011	164,121	\$ 602,500	\$	26,976	\$	0	\$	0	\$ 110,256	\$92,000	\$ 2,000	\$ 833,732	
2012	165,080	\$ 620,575	\$	27,588	\$	0	\$	0	\$113,568	\$92,000	\$ 2,000	\$ 855,731	
2013	166,942	\$ 639,192	\$	28,424	\$	0	\$	0	\$ 116,976	\$92,000	\$ 2,000	\$ 878,592	LL1
2014	168,687	\$ 1,756,012	\$	29,277	\$	0	\$	0	\$ 120,485	\$ 94,760	\$ 2,060	\$ 2,002,595	
2015	170,176	\$ 1,808,693	$\$$	30,155	\$	0	\$	0	\$ 124,100	\$ 97,603	\$ 2,122	\$ 2,062,672	
2016	171,518	\$ 1,862,953	\$	31,060	\$	0	\$	0	\$ 127,823	\$ 100,531	\$ 2,186	\$ 2,124,553	LL2
2017	173,762	\$ 1,389,429	\$	31,992	\$	0	\$	0	\$ 131,658	\$ 103,547	\$ 2,252	\$ 1,658,877	
2018	175,919	\$ 1,431,112	\$	32,952	\$	0	\$	0	\$ 135,607	\$ 106,653	\$ 2,320	\$1,708,644	
2019	178,226	\$ 1,474,045	\$	33,941	\$	0	\$	0	\$ 139,675	\$ 109,853	\$ 2,390	\$ 1,759,905	
2020	181,555	\$ 1,518,267	\$	34,959	\$	0	\$	0	\$ 143,866	\$ 113,148	\$2,462	\$ 1,812,702	LL3
2021	184,324	\$ 660,162	\$	36,008	\$	0	\$	0	\$ 148,182	\$ 116,543	\$ 2,536	\$ 963,430	
2022	186,203	\$ 679,966	\$	37.088	\$	0	\$	0	\$ 152,627	\$ 120,039	\$ 2,612	\$ 992,333	
2023	188,532	\$ 700,365	\$	38,201	\$	0	\$	0	\$ 157,206	\$ 123,640	\$ 2,690	\$ 1,022,103	
2024	190,339	\$ 721,376	\$	39,347	\$	0	\$	0	\$ 161,922	\$ 127.350	\$ 2,771	\$ 1,052,766	
2025	193,108	\$ 743,018	\$	40.527	\$	0	\$	0	\$ 166,780	\$131,170	\$ 2,854	\$ 1,084,348	
2026	195,524	\$ 765,308	\$	41,743	\$	0	\$	0	\$ 171,783	\$135,105	\$ 2,940	\$ 1,116,880	
2027	197,820	\$ 788,267	\$	42,995	\$	0	\$	0	\$ 176,937	\$ 139,158	\$ 3.028	\$ 1,150,385	
2028	199,226	\$ 811,915	\$	44.285	\$	0	\$	0	\$ 182,245	\$ 143,333	\$3,119	\$ 1,184,897	
2029	201,798	\$ 836,273	\$	45,614	\$	0	\$	0	\$ 187.712	\$147,633	\$3,213	\$ 1,220,445	LL4
2030	204,286	\$ 2,203,719	\$	46,982	\$	0	\$	0	\$ 193.344	\$ 152,062	\$ 3,309	\$ 2,599,415	
2031	206,654	\$ 2,269,830	\$	48,391	\$	0	\$	0	\$ 199,144	\$ 156,624	\$ 3,408	\$ 2,677,397	
2032	209,049	\$ 2,337,925	\$	49,843	\$	0	\$	0	\$ 205,118	\$ 161,323	\$ 3,510	\$ 2,757,719	
2033	211,472	\$ 2,408,063	\$	51,338	\$	0	\$	0	\$ 211,272	\$ 166,162	\$ 3,615	\$ 2,840,450	
2034	213,922	\$2,480,305	\$	52.878	\$	0	\$	0	\$ 217,610	\$ 171,147	\$ 3,723	\$ 2,925,663	
2035	216,402	\$ 2,554,714	\$	54,464	\$	0	\$	0	\$ 224,138	\$176,282	\$3,835	\$ 3,013,433	LL5

*Based on 2011 costs inflated at the annual rate of 3 percent per year

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 faylor
Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Cost Estimates - New Services*

Year	New Services Subtotal	Transformer Subtotal	Meter Subtotal	Security Light Subtotal	Total New Construction	Load Level
2010	\$ 980,280	\$ 428,740	\$ 80,964	\$ 74,269	\$ 1,564,253	
2011	\$ 1,008,288	\$ 443,326	\$ 84,708	\$ 78,012	\$ 1,614,334	
2012	\$ 1,038,630	\$ 456,586	\$ 87,048	\$ 80,376	\$ 1,662,640	
2013	\$ 1,069,750	\$ 470,730	\$ 89,856	\$ 82,740	\$ 1,713,076	LL1
2014	\$ 1,116,202	\$ 492,553	\$ 77,917	\$ 86,600	\$ 1,773,272	
2015	\$ 1,164,282	\$ 514,150	\$ 81,273	\$89,200	\$ 1,848,905	
2016	\$ 1,214,424	\$ 536,604	\$ 84,761	\$ 91,800	\$ 1,927,589	LL2
2017	\$ 1,266,264	\$ 558,734	\$ 88,384	\$ 94,600	\$ 2,007,982	
2018	\$ 1,320,246	\$ 582,920	\$ 92,148	\$ 97,400	\$ 2,092,714	
2019	\$ 1,376,415	\$ 608,016	\$ 96,059	\$ 100,400	\$ 2,180,890	
2020	\$ 1,434,816	\$ 632,730	\$ 100,122	\$ 103,400	\$ 2,271,068	LL3
2021	\$ 1,495,494	\$ 659,661	\$ 104.341	\$ 106,600	\$ 2,366,096	
2022	\$ 1,558,494	\$ 687,555	\$ 108,724	\$ 109,800	\$ 2,464,573	
2023	\$ 1,623,861	\$ 715,500	\$ 113,276	\$ 113,000	\$ 2,565,637	
2024	\$ 1,691,640	\$ 745,844	\$ 118,003	\$ 116,400	\$ 2,671,887	
2025	\$ 1,761,876	\$ 777,216	\$ 122,912	\$ 119,800	\$ 2,781,804	
2026	\$ 1,835,068	\$ 810,152	\$ 128,009	\$ 123,400	\$ 2,896,629	
2027	\$ 1,910,817	\$ 842,553	\$ 133,302	\$ 127,200	\$ 3,013,872	
2028	\$ 1,989,632	\$ 877,611	\$ 138,796	\$ 131,000	\$ 3,137,039	
2029	\$ 2,071,573	\$ 914,315	\$ 144,501	\$ 135,000	\$ 3,265,389	LL4
2030	\$ 2,156,700	\$ 950,400	\$ 150,422	\$ 139,000	\$ 3,396,522	
2031	\$ 2,245,073	\$ 989,898	\$ 156,569	\$ 143,200	\$ 3,534,740	
2032	\$ 2,336,752	\$ 1,030,584	\$ 162,950	\$ 147,400	\$ 3,677,686	
2033	\$ 2,431,797	\$ 1,071,111	\$ 169,572	\$ 151,800	\$ 3,824,280	
2034	\$ 2,530,268	\$ 1,115,303	\$ 176,445	\$ 156,400	\$ 3,978,416	
2035	\$ 2,632,724	\$ 1,160,760	\$ 183,578	\$ 161,000	\$ 4,138,062	LL5

*Based on 2011 costs inflated at the annual rate of 3 percent per year.

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION Kentucky 23 Taylor

Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Cost Estimates - New Services*

| | Total
 Consumers | No. of New
 Services | Cost per
 New Service | New Services
 Subtotal | No. of New
 Transformers
 Annual Average)
 | Cost per
 Transformer
 (Annual Average)

 Underground | Transformer
 Subtotal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Projected | Load | | | | | |
| Lejevel | | | | | | | |

*Based on 2011 costs inflated at the annual rate of 3 percent per year.

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Cost Estimates - New Services*

Year	No. of Meters Projected	Cost per Meter Projected	Meter Subtotal	No. of New Sec. Lights Projected	Cost per Sec. Light Projected	Security Light Subtotal	Total Meters and Security Light Cost	Load Level
2010	468	\$ 173	\$ 80,964	197	\$ 377	\$ 74,269	\$ 155,233	
2011	468	\$ 181	\$ 84,708	197	\$ 396	\$ 78,012	\$ 162,720	
2012	468	\$ 186	\$ 87,048	197	\$ 408	\$ 80,376	\$ 167,424	
2013	468	\$ 192	\$ 89,856	197	\$ 420	\$ 82,740	\$ 172,596	LL1
2014	394	\$ 198	\$ 77,917	200	\$ 433	\$ 86,600	\$ 164,517	
2015	399	\$ 204	\$ 81,273	200	\$ 446	\$ 89,200	\$ 170,473	
2016	404	\$ 210	\$ 84,761	200	\$ 459	\$ 91,800	\$ 176,561	LL2
2017	409	\$ 216	\$ 88,384	200	\$ 473	\$ 94,600	\$ 182,984	
2018	414	\$ 223	\$ 92,148	200	\$ 487	\$ 97,400	\$ 189,548	
2019	419	\$ 229	\$ 96,059	200	\$ 502	\$ 100,400	\$ 196,459	
2020	424	\$ 236	\$ 100.122	200	\$ 517	\$ 103,400	\$ 203,522	LL3
2021	429	\$ 243	\$ 104,341	200	\$ 533	\$ 106,600	\$ 210,941	
2022	434	\$ 251	\$ 108,724	200	\$ 549	\$ 109,800	\$ 218,524	
2023	439	\$ 258	\$ 113,276	200	\$ 565	\$ 113,000	\$ 226,276	
2024	444	\$ 266	\$ 118,003	200	\$ 582	\$ 116,400	\$ 234,403	
2025	449	\$ 274	\$ 122,912	200	\$ 599	\$ 119,800	\$ 242,712	
2026	454	\$ 282	\$ 128,009	200	\$ 617	\$ 123,400	\$ 251,409	
2027	459	\$ 290	\$ 133,302	200	\$ 636	\$ 127,200	\$ 260,502	
2028	464	\$ 299	\$ 138,796	200	\$ 655	\$ 131,000	\$ 269,796	
2029	469	\$ 308	\$ 144,501	200	\$ 675	\$ 135,000	\$ 279,501	LL4
2030	474	\$ 317	\$ 150,422	200	\$ 695	\$ 139,000	\$ 289,422	
2031	479	\$ 327	\$ 156,569	200	\$ 716	\$ 143,200	\$ 299,769	
2032	484	\$ 337	\$ 162,950	200	\$ 737	\$ 147,400	\$ 310,350	
2033	489	\$ 347	\$ 169,572	200	\$ 759	\$ 151,800	\$ 321,372	
2034	494	\$ 357	\$ 176,445	200	\$ 782	\$ 156,400	\$ 332,845	
2035	499	\$ 368	\$ 183,578	200	\$ 805	\$ 161,000	\$ 344,578	LL5

*Based on 2011 costs inflated at the annual rate of 3 percent per year.

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Cost Estimates - Distribution Line Construction
(2011 Dollars)

L.L. 1	2011-2013	Reconductoring		Miles	Cost / Mile		
		$2 \varnothing$	1/0 ACSR	0.7 @	\$ 40,000		\$ 28,000
		30	$1 / 0 \mathrm{ACSR}$	186 @	\$ 55,000	$=$	\$ 1,023,000
		30	336 ACSR	8.9 @	\$ 85,000	$=$	\$ 756,500
		$3 \varnothing$	336 ACSR (DC)	0.0 @	\$ 100,000	$=$	\$
		$3 \varnothing$	477 ACSR	0.0 @	\$ 95,000	$=$	\$
		30	477 ACSR (DC)	0.0 @	\$ 110,000	$=$	\$
							\$ 1,807,500
				Cost per year (3 years) $=$			\$ 602,500
L.L. 2	2014-2016	Reconductoring		Miles	Cost / Mile		
		$3 \varnothing$	1/0 ACSR	77.6 @	\$ 55,000	$=$	\$4,268,000
		3ø 336 ACSR		3.6 @	\$ 85,000	$=$	\$ 306,000
		$3 \varnothing \quad 336$ ACSR (DC)		0.0 @	\$ 100,000	$=$	\$
		$3 \varnothing 477$ ACSR		2.6 @	\$ 95,000	$=$	\$ 247,000
		30	477 ACSR (DC)	00 @	\$ 110,000	$=$	\$
							\$ 4,821,000
				Cost per year (3 years)			\$ 1,607,000
LL3	2017-2020	Reconductoring		Miles	Cost / Mile		
		30	1/0 ACSR	59.9 @	\$ 55,000	$=$	\$ 3,294,500
		$30 \quad 336$ ACSR		4.0 @	\$ 85,000	$=$	\$ 340,000
			336 ACSR (DC)	00 @	\$ 100,000	$=$	
		30 30	477 ACSR	9.0 @	\$ 95,000	$=$	\$ 855,000
		30	477 ACSR (DC)	15 @	\$ 110,000	$=$	\$ 165,000
							\$4,654,500
		$3 \varnothing$		Cost per year (4 years)			\$ 1,163,625
LL4	2021-2029	Reconductoring		Miles	Cost / Mile		
		$3 \varnothing$$3 \varnothing$	1/0 ACSR	39.6 @	\$ 55,000	$=$	\$ 2,178,000
			30336 ACSR	9.4 @	\$ 85,000	$=$	\$ 799,000
		$3 \varnothing 336$ ACSR (DC)		00 @	\$ 100,000	$=$	\$
		$30 \quad 477$ ACSR		130 @	\$ 95,000	$=$	\$ 1,235,000
		$3 \varnothing$	ø 477 ACSR (DC)	1.9 @	\$ 110,000	$=$	\$ 209,000
							\$4,421,000
				Cost per year (9 years) =			\$ 491,222
LL5	2030-2035	Reconductoring		Miles	Cost / Mile		
		$3 \varnothing$	1/0 ACSR	635 @	\$ 55,000	$=$	\$ 3,492,500
		$3 \varnothing$	336 ACSR	41.7 @	\$ 85,000	$=$	\$ 3,544,500
		$3 \varnothing$	336 ACSR (DC)	00 @	\$ 100,000	$=$	
		$3 \varnothing$	477 ACSR	5.3 @	\$ 95,000	-	\$ 503,500
		$3 \varnothing$	477 ACSR (DC)	0.0 @	\$ 110,000	$=$	\$
							\$7,540,500
				Cost per year (6 years) $=$			\$ 1,256,750

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

 Cost Estimates - Transmission Facilities (2011 Dollars)

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

Cost Estimates - Substations
(2011 Dollars)

				$\begin{aligned} & \text { OTAL } \\ & \text { OSTS } \end{aligned}$		KPC pplier)
LL1	2009	Add Cooling Fans - Campbellsville \#2		-		-
	2011	Add Cooling Fans - Coburg		-		-
LL2	2016	Build Pierce Substation $69-12.47 \mathrm{kV}, 11.2$ MVA 4 -feeders	\$	800,000	\$	800,000
LL3	2019	Build Cantown Substation $69-12.47 \mathrm{kV}, 11.2 \mathrm{MVA}$ 4-feeders	\$	800,000	\$	800,000
	2020	Add Cooling Fans - Creston		-		-
LL4	2021	Build Log Church Substation 69-12.47 kV, 11.2 MVA	\$	800,000	\$	800,000
		4-feeders				
	2024	Build Sparksville Substation $69-12.47 \mathrm{kV}, 11.2 \mathrm{MVA}$ 4 -feeders	\$	800,000	\$	800,000
	2026	Build Saloma 2 Substation $69-12.47 \mathrm{kV}, 11.2$ MVA 4 -feeders	\$	720,000	\$	720,000
	2027	Build Bloyd's Crossroads Substation $69-12.47 \mathrm{kV}, 11.2$ MVA 4-feeders	\$	800,000	\$	800,000
	2028	Add Cooling Fans - East Campbellsville		-		-
LL5	2034	Add Cooling Fans - Greensburg		-		-
				,720,000		,720,000

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY Cost Estimates - Uprating Existing Services
 (2011 Dollars)

Service Wires to Increase Capacity

From 2011-2013 Construction Work Plan:			
2011	44 upgrades	$\$ 609$ each	$=$
2012	44 upgrades	$\$ 627$ each	$=$
2013	44	upgrades	$\$ 646$ each

For the years 2014-2035, costs will be increased by 3\% each year for inflation. Total upgrades per year will remain constant.

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION Kentucky 23 Taylor
 Campbellsville, Kentucky
 2011 LONG RANGE SYSTEM STUDY
 Cost Estimates - Miscellaneous Distribution Equipment (2011 Dollars)

Sectionalizing Equipment
From 2011-2013 Construction Work Plan:
$2011=\$ 110,256$
$2012=\$ 113,568$
$2013=\$ 116,976$

Line Voltage Regulators

From 2011-2013 Construction Work Plan:
Estimate per year $=\$ 92,000$

Line Capacitors

From 2011-2013 Construction Work Plan:
Estimate per year $=\$ 2,000$

For the years 2014-2035, costs will be increased by 3\% each year for inflation. Total upgrades per year will remain constant.

TAYLOR COUNTRY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor

Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY
Cost Estimates - Pole \& Conductor Replacements
(2011 Dollars)

Pole Replacement

From 2011-2013 Construction Work Plan:

2011	447 poles	$\$ 1,292$ each $=\$ 577,524$
2012	447 poles	$\$ 1,331$ each $=\$ 594,957$
2013	447 poles	$\$ 1,371$ each $=\$ 612,837$

For the years 2014-2035, costs will be increased by 3\% each year for inflation. Total poles per year will remain constant.

Conductor Replacement

From 2011-2013 Construction Work Plan, overhead conductor replacement is \$150,000 each year. There is a one time special underground replacement project in 2012 for $\$ 250,000$.

For the years 2014-2035, \$150,000 estimated cost for 2013 will be increased by 3% each year for inflation.

Conductor Replacement Plan:

1. Replace all single phase copper lines causing consistent outages.
2. Two and three phase copper lines are to be replaced as needed due to feeder loading conditions.
3. Lines will be replaced based on circuit reliability and loading conditions.
4. New single phase lines are built either 4 ACSR or 1/0 ACSR depending on likelihood that line will require three-phase construction in the near future.
5. Small amounts of old 4 ACSR remain on the system and will be replaced as needed.
6. Taylor County RECC's goal is to replace approximately 5 miles per year.

Total Miles of Copper Conductor on System

No. Substation	1ph	2ph	3 ph
0 Campbellsville	2.0	0.0	1.1
1 Mile Lane	2.8	0.0	0.0
2 Greensburg	8.6	0.0	0.0
3 Summersville	12.2	0.0	0.0
4 McKinney Corner	8.3	0.0	0.0
5 Coburg	8.3	0.0	0.0
6 Columbia	12.2	0.0	0.0
7 Green River Plaza	0.1	0.0	0.0
8 Bass	2.2	0.0	3.5
9 Phil	10.0	0.0	0.0
10 West Columbia	8.1	0.0	0.0
11 Creston	12.6	0.0	1.5
12 East Campbellsville	1.9	0.2	4.4
13 Garlin	8.6	0.0	0.0
Totals =	97.9	0.2	10.5

TAYLOR COUNTY RURAL ELE¢TRIC COOPERATIVE CORPORATION

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION Kentucky 23 Taylor
Distribution Plant Investment per kW

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Distribution Plant Investment per Consumer

EXHIBIT 16
Page 3 of 3

2011 LONG RANGE SYSTEM STUDY ECONOMIC COMPARISONS (2011 DOLLARS)

PLAN SUMMARY

Plan A - No new substations added; system voltage remains 12.5 kV .
Plan B - New Sparksville substation added
Plan C- Same as Plan B, except new Bloyd's Crossroads substation added.
Plan D- Same as Plan C, except new Saloma 2 substation added.
Plan E- Same as Plan D, except new Cantown substation added.
Plan F- Same as Plan E, except new Log Church substation added
Plan G- Same as Plan F, except new Pierce substation added.

PRESENT WORTH ECONOMIC ANALYSIS

	(EKPC) Power Supplier	(TCRECC) Power Distributor	One Ownership	Lowest Cost Plan Difference
Plan A	$(\$ 1,545,456)$	$\$ 45,016,588$	$\$ 43,471,132$	$\$ 2,961,591$
Plan B	$(\$ 1,218,645)$	$\$ 43,604,823$	$\$ 42,386,178$	$\$ 1,876,637$
Plan C	$(\$ 942,116)$	$\$ 43,152,349$	$\$ 42,210,233$	$\$ 1,700,692$
Plan D	$(\$ 918,820)$	$\$ 42,846,939$	$\$ 41,928,119$	$\$ 1,418,578$
Plan E	$(\$ 857,261)$	$\$ 41,564,076$	$\$ 40,706,815$	$\$ 197,274$
Plan F	$\$ 214,654$	$\$ 40,335,434$	$\$ 40,550,088$	$\$ 40,547$
Plan G	$\$ 605,922$	$\$ 39,903,619$	$\$ 40,509,541$	$\$ 0$

CONSTRUCTION COSTS AND LOSSES SUMMARY

Plan A	$\$ 1,475,979$	$\$ 25,717,176$	$\$ 27,193,155$	$\$ 19,299,412$	$\$ 46,492,567$	$\$ 3,057,790$
Plan B	$\$ 1,818,961$	$\$ 24,236,745$	$\$ 26,055,706$	$\$ 19,368,078$	$\$ 45,423,784$	$\$ 1,989,007$
Plan C	$\$ 2,076,852$	$\$ 23,863,411$	$\$ 25,940,263$	$\$ 19,288,938$	$\$ 45,229,201$	$\$ 1,794,424$
Plan D	$\$ 2,076,852$	$\$ 23,656,926$	$\$ 25,733,778$	$\$ 19,190,013$	$\$ 44,923,791$	$\$ 1,489,014$
Plan E	$\$ 2,134,574$	$\$ 22,390,356$	$\$ 24,524,930$	$\$ 19,173,720$	$\$ 43,698,650$	$\$ 263,873$
Plan F	$\$ 3,165,927$	$\$ 21,333,959$	$\$ 24,499,886$	$\$ 19,001,475$	$\$ 43,501,361$	$\$ 66,584$
Plan G	$\$ 3,531,158$	$\$ 21,012,707$	$\$ 24,543,865$	$\$ 18,890,912$	$\$ 43,434,777$	$\$ 0$

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION
Kentucky 23 Taylor
Campbellsville, Kentucky
2011 LONG RANGE SYSTEM STUDY One Ownership Present Worth Sensitivity Analysis*

\%			
Rate	Plan A	Plan F	Plan G
1.0\%	\$39,777,109	\$37,104,351	\$37,072,712
1.5\%	\$40,628,381	\$37,898,454	\$37,865,185
2.0\%	\$41,525,814	\$38,735,623	\$38,700,347
2.5\%	\$42,472,350	\$39,618,544	\$39,580,855
3.0\%	\$43,471,132	\$40,550,088	\$40,509,541
3.5\%	\$44,525,514	\$41,533,314	\$41,489,430
4.0\%	\$45,639,085	\$42,571,488	\$42,523,747
\%			
Load			
Growth	Plan A	Plan F	Plan G
1.3\%	\$46,364,091	\$43,000,189	\$43,011,931
1.8\%	\$43,471,132	\$40,550,088	\$40,509,541
3.0\%	\$33,667,025	\$30,967,274	\$30,976,117

Energy Inflation

Rate	Plan A	Plan F	Plan G
1.0%	$\$ 41,634,572$	$\$ 38,754,088$	$\$ 38,728,593$
1.5%	$\$ 42,209,858$	$\$ 39,316,864$	$\$ 39,286,727$
2.0%	$\$ 42,821,157$	$\$ 39,914,671$	$\$ 39,879,526$
2.5%	$\$ 43,471,132$	$\$ 40,550,088$	$\$ 40,509,541$
3.0%	$\$ 44,162,658$	$\$ 41,225,901$	$\$ 41,179,524$
3.5%	$\$ 44,898,833$	$\$ 41,945,112$	$\$ 41,892,439$
4.0%	$\$ 45,683,002$	$\$ 42,710,961$	$\$ 42,651,490$

Present
Worth

Rate	Plan A	Plan F	Plan G
4.0%	$\$ 66,882,465$	$\$ 63,591,606$	$\$ 63,599,079$
5.0%	$\$ 58,910,831$	$\$ 55,993,110$	$\$ 56,010,379$
6.0%	$\$ 52,177,952$	$\$ 49,575,890$	$\$ 49,600,051$
7.0%	$\$ 46,466,533$	$\$ 44,132,923$	$\$ 44,161,743$
8.0%	$\$ 41,600,603$	$\$ 39,496,503$	$\$ 39,528,271$
9.0%	$\$ 37,437,159$	$\$ 35,530,299$	$\$ 35,563,714$

* For the three closest plans with different design approaches.

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPROATION
Kentucky 23 Taylor

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPROATION Kentucky 23 Taylor

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPROATION

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPROATION

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor

Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

CONDUCTOR LIFE CYCLE ANALYSIS (NEW CONSTRUCTION LEGEND AND INPUT VALUES)

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor Campbellsville, Kentucky

CONDUCTOR LIFE CYCLE ANALYSIS
7.2 kV

Summary

	Initial Loading					Future Loading based on a		
						3.00\% LGR	for	35 Years
For loads below	1,808	kW use			1/0 ACSR		5,087	kW
For loads between	1,808	kW and	2,847	kW use	336 ACSR		5,087	kW
For loads above	2,847	kW and		kW use	477 ACSR		8,011	kW

Construction Costs

Conductor	Cost Per Mile	Ohms Per Mile	Conductor Operating Capacity*$50 \% \quad 100 \%$		
$3 \varnothing 1 / 0 \mathrm{ACSR}$	\$55,000	0.888	2,561	5,123	kW
$3 \varnothing 336$ ACSR	\$85,000	0.278	5,493	10,986	kW
$3 \varnothing 477$ ACSR	\$95,000	0.196	6,837	13,675	kW

* Operating Capacity is defined as the manufacturer's rating at a maximum recommended continuous operating temperature of $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$, with a $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ ambient temperature and a 2 ft ./sec wind.

Taylor County RECC
Conductor Life Cycle Analysis
Total Life Cycle Cost - Three Phase 7.2 kV

Patterson \& Dewa

TAYLOR COUNTY RURAL ELECTRIC COOPERATIVE CORPORATION

Kentucky 23 Taylor
Campbellsville, Kentucky

2011 LONG RANGE SYSTEM STUDY

SYSTEM DESIGN GUIDELINES

Each of the criteria items listed below was reviewed and concurred by the engineering staff at Taylor County RECC and the RUS General Field Representative.

Construction proposed in this construction work plan is required to meet the following minimum standards of adequacy for voltages, thermal loading, safety, and reliability on the system.

1) The maximum voltage drop from the substation on primary distribution lines is not to exceed 8 volts unregulated, 16 volts with one set of line voltage regulators, and 24 volts with two sets of line voltage regulators. Ordinarily, lines will be limited to one bank of line regulators.
2) The following equipment is not to be thermally loaded by more than the percentage shown on the nameplate.

$$
\begin{array}{lr}
\text { Power Transformers: } & 95 \% \text { summer rating / } 95 \% \text { winter rating } \\
\text { Voltage Regulators: } & 100 \% \text { at } 10 \% \text { buck or boost; } 160 \% \text { at } 5 \% \text { boost or buck. } \\
\text { Oil Circuit Reclosers: } 100 \% \\
\text { Line Fuses: } & 80 \%
\end{array}
$$

3) Primary conductors are considered for replacement when loaded to 65% of the thermal rating. Major tie lines between substations can be loaded to 100% during emergency situations.
4) Poles and crossarms are to be replaced as soon as practicable if found to be physically deteriorated by inspection.
5) Conductors are to be replaced if ACSR is found to have a rusted core or if copper has become brittle and dangerous.
6) Primary distribution lines are to be rebuilt if they are found to be unsafe or in violation (when constructed) of the National Electrical Safety Code or other applicable code clearances.
7) New lines and line conversions are to be built according to the standard primary voltage levels as recommended in the Long Range System Study.
8) New primary conductor sizes are to be determined on a case by case basis using the Economic Conductor sizing computer program. A minimum of $1 / 0 \mathrm{ACSR}$ is to be used on main lines, and a minimum of 4 ACSR is to be used on tap lines.
9) All new primary construction is to be overhead except where underground is required to comply with governmental or environmental regulations, local restrictions, or favorable economics.
10) All new distribution lines are to be designed and built according to RUS standard construction specifications and guidelines.
11) A single-phase tap will be considered for multi-phasing if any of the following conditions are present:
a) Serves more than 60 meters,
b) Load current over 35-50 amps,
c) Serves an area that is growing.

CASE NO: 2011-00163

CONTAINS

LARGE OR OVERSIZED

MAP(S)

RECEIVED ON: August 19, 2011

TAYLOR COUNTY RECC
 POBOX 100
 CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 2

Line Loss for 2008 was 5.96% for 20092.54%

Taylor County RECC completed the conversion from the consumer reading the meter to AMR meters in the first quarter of 2009. Readings from AMR meters were used for the bills mailed to consumers in May 2009.

Under the consumer read meter system consumers would read the meter anywhere between the 10th of each month to the last day of the month.
The AMR uses the meter reading for the last day of the month.
The result of this conversion was a catch up in Kwh usage resulting in a negative 18.7% line loss. SEE BELOW:

PURCHASE	SOLD	OFFICE USE	LOSS
$39,959,416$	$47,363,024$	59,295	$(7,462,903)$

As a result line loss for 2009 was 2.54%.

Actual Line Loss for 2010 was 5.4%.

Witness available: John F. Patterson

ITEM 3

TAYLOR COUNTY RECC
POBOX 100
CAMPBELLSVILLE KY 42719
RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 3

Load Factor for the year 2000 was 46.2 and for the year 2008 was 44.3 and for the year 2009 was 39.7.

		KW	LOAD
	KWH	DEMAND	FACTOR
2000	$384,044,950$	94,800	46.2
2008	$549,212,071$	141,570	44.3
2009	$537,279,486$	154,562	39.7

Kwh sales decreased from 2008 to 2009 and KW demand increased
this is the main contributing factor to the reduction in Load Factor.

TAYLOR COUNTY RECC
POBOX 100
CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 4

a. NP is listed in error, these jobs are complete.
b. 1/0 ACSR three phase conversion per mile estimates that were utilized were low. Additionally, during the workplan period, there were some escalations in contractor labor prices as well as substantial escalations in material costs.

Witness available: Mike Skaggs

TAYLOR COUNTY RECC
POBOX 100
CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 5
309.01 does not exist in Exhibit C, it appears that the commission is comparing 309.01 to 301.09 . The direct comparison for 309.01, in terms of Exhibit C , is 304.10 . Although somewhat confusing as it pertains to a backwards looking comparison, a naming convention change was made with this workplan. Every substation has a matching numerical identifier within our CIS and GIS systems. In the past, the substation number utilized within the workplans did not match that of the CIS/GIS which TCRECC operational personnel utilize in day to day processes. In order to simplify interpretation of the each 300 job, at least as far as which substation the job is tied to, the change was made. In workplans prior to the current, as an example, the 4 substation(304.10) coincided with jobs to be done on the Phil substation. However, within the CIS/GIS systems the Phil substation is coded as substation 90, hence the identifier assigned with this workplan(309.01). Given this convention change, TCRECC operations personnel can more easily identify, by noting the last digit of the 300 number, the substation on which the job is tied to.
a. Cost for construction better reflects the cost of labor and materials versus cost estimated at the start of the last workplan that proved too conservative.
b. n/a
c. No duplication confirmed.

Witness available: Mike Skaggs

TAYLOR COUNTY RECC
 POBOX 100
 CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 6

TCRECC will be responsible for costs associated with constructing circuits exiting the substation thereby tying into existing lines.

Witness available: Mike Skaggs

TAYLOR COUNTY RECC

POBOX 100
CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 7

a. All CATV attachments are not code compliant. TCRECC inspects joint use attachments during pole inspections, staking for new builds/pole changes as well as during general system inspections.
b. TCRECC does bill CATV for all attachments and billings are current.
c. In the vast majority of cases, TCRECC owns the pole. Issues arise when TCRECC changes the pole and tops above the joint use cable. When the joint users make their attachment to the new poles the old poles are, many times, left in place.
d. Try and maintain a 4 year cycle but do have issues at times with yard trees ect.

Witness available: Mike Skaggs

ITEM 8

TAYLOR COUNTY RECC
P OBOX 100
CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 8

See the response to Item 2 of this filing for a discussion of the decrease in line loss for 2009.

Actual Line Loss for 2010 was 5.4%.
Witness available: John F. Patterson

ITEM 9

TAYLOR COUNTY RECC
POBOX 100
CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 9

TCRECC walks line/checks poles on one substation per year. Below is the approximate number of poles checked via our line walking process:
06-4710
07-4165
08-4553
09-1847
10-2269

Additionally, the following day-to-day processes result in poles being checked/replaced:
New builds - staking engineers check takeoff poles
Lineman/Serviceman - before climbing poles, poles are verified in good condition
Pole changes due to joint use, ect - obviously, new poles are placed
Counts associated with these processes are not tracked.

Witness available: Mike Skaggs

TAYLOR COUNTY RECC
POBOX 100
CAMPBELLSVILLE KY 42719

RESPONSE TO PSC ORDER IN CASE NO 2011-00163

ITEM 10

Yes.
a. Voltage readings are provided, the spreadsheet details ~ 1200 meters for which TCRECC monitored voltage throughout the past winter. These meters are dispersed all over the system but some are purposely set at the end of each feeder to allow for voltages to be obtained at the system extremities. TCRECC utilizes AMR to set up a job to read the voltage for the meters in attempts to coincide with the a.m. system peak - the results of the job are dumped into Excel. The AMR processes/functions are at the 'meter' level and these are unaware of the concept of line section as it pertains to system modeling. Therefore, utilizing the inherent AMR formats, TCRECC concentrated on investigating the geographic location of the meters in question utilizing/cross referencing to system mapping data and local system knowledge - column 1 of the spreadsheet details this as it provides a location of the pertinent meter. During cold weather, and after interrogating several of the daily jobs, patterns become evident. Utilizing the data in this fashion allows TCRECC to identify areas, versus line sections, that have issues given the peak conditions. With these areas noted, special attention is given to system modeling results to verify that the model shows the same system weaknesses.
TCRECC(P\&D) models the system using a balanced model. There are several issues of note when trying to match model output to real world voltage readings down to a tolerance of 2 v each and every time. Several of the issues/limitations are noted:

1. Model is balanced, no system is perfectly balanced, amperage wise, at peak and different parts of the system grow at different rates over the period of the workplan.
2. Model is ran with a certain system loading, does the model loading exactly match the system loading at the time the voltages were obtained?
3. Is the loading on the existing system reflective of the existing/just past peak or is it the end of work plan loading level?
4. Is the meter on a high usage house or a low usage stock barn, the barn is a better indicator of primary voltage given less transformer/service voltage drop
5. Meter manufacturer advertises plus/minus 1% tolerance voltage readings
b. n / a

Witness available: Mike Skaggs

12/8/10 Focus Voltages

AMR \#	Date	Time
12287757	008-DEC-2010	07:21:12C
12288013	008-DEC-2010	07:21:12C
14845135	008-DEC-2010	07:21:20C
10622361	008-DEC-2010	07:26:23C
1062237	008-DEC-2010	07:23:33C
12287695	008-DEC-2010	07:21:11C
12287959	008-DEC-2010	07:23:46C
14627237	008-DEC-2010	07:22:59C
14988402	008-DEC-2010	07:21:36C
12287775	008-DEC-2010	07:21:11C
1062234	008-DEC-2010	07:23:33C
10623312	008-DEC-2010	07:23:33C
10624875	008-DEC-2010	07:24:11C
1130335	008-DEC-2010	07:22:42C
11303396	008-DEC-2010	07:23:33C
11303433	008-DEC-2010	07:26:23C
11561189	008-DEC-2010	07:26:23C
11561199	008-DEC-2010	07:23:33C
1228790	008-DEC-2010	07:23:46C
12288033	008-DEC-2010	07:23:07C
14627064	008-DEC-2010	07:22:29C
10772920	008-DEC-2010	07:23:58C
11303699	008-DEC-2010	07:24:11C
11561182	008-DEC-2010	07:23:02C
12287709	008-DEC-2010	07:21:12C
12287989	008-DEC-2010	07:21:38C
12287993	008-DEC-2010	07:22:21C
12288035	008-DEC-2010	07:23:07C
14627061	008-DEC-2010	07:21:33C
14627252	008-DEC-2010	07:22:59C
14627254	008-DEC-2010	07:22:49C
14710396	008-DEC-2010	07:21:17C
14988380	008-DEC-2010	07:25:11C
14988462	008-DEC-2010	07:22:07C
11303365	008-DEC-2010	07:23:58C

Rdg	Voltage	Voltage(120 v base) :	Meter\#	Sub \#	
4816	224	112	76198	40	Pierce off pt406
21984	224	112	76254	40	Pierce off pt406
722	224	112	76898	1	i10-327, Whispering Hills Subd
12811	224	112	57124	50	Past Keith C, backside of wooded development
29330	224	112	57103	\#\#	Milltown, Portland direction
696	225	112.5	76246	\#\#	Milltown, opposite Portland
4113	225	112.5	76506	50	Corbin's Bend, at Holmes Bend
7842	225	112.5	76279	\#\#	Bell Hill
3821	225	112.5	76840	40	Liletown South
6869	226	113	76164	\#\#	Weed Ridge
10554	226	113	57151	\#\#	Milltown, Portland direction
2775	226	113	57547	\#\#	Milltown, Portland direction
9711	226	113	57144	\#\#	Log Church
2	226	113	57479	90	Thomas Ridge
47420	226	113	57349	\#\#	Milltown, Portland direction
13677	226	113	57393	50	Past Keith C, backside of wooded development
14201	226	113	57130	50	Past Keith C, toward water tower
1474	226	113	57179	\#\#	Milltown, Portland direction
3301	227	113.5	76499	50	Corbin's Bend, at Holmes Bend
6495	227	113.5	76141	\#\#	Toward Breeding, Pt1018 tap, right before Regs
13645	227	113.5	76428	80	Wise Rd off Dutton Crk 3p end
7298	227	113.5	57446	\#\#	Pellyton from Barnett's Crk
632	227	113.5	57413	\#\#	Barn prior to Log Church
124	227	113.5	57145	\#\#	Log Church
2082	228	114	76255	40	Pierce - all the way around to 88
79	228	114	76169	\#\#	Milltown, Portland direction
225	228	114	76227	30	Social Band
4485	228	114	76143	\#\#	Toward Breeding, Pt1018 tap, right before Regs
480	228	114	76333	\#\#	Little Cake past D Roberts
10039	228	114	76277	\#\#	Bell Hill
2943	228	114	76340	\#\#	By Charles Neat
2003	228	114	76677	\#\#	Reid's Chapel Rd
4281	228	114	76859	20	the Ranch
2776	228	114	76821	30	Ronnie Allen
12817	228	114	57444	\#\#	Pellyton from Barnett's Crk

$11303426008=-2010$	07:23:58C	16944	228	$1{ }^{\prime}$	57445	\#\#	Pellyton from Barnett's Crk
12287703 008-DEC-2010	07:22:52C	20097	229	114.3	76272	80	
12287725 008-DEC-2010	07:21:10C	27865	229	114.5	76230	\#\#	
12287729 008-DEC-2010	07:21:10C	899	229	114.5	76231	\#\#	
12288008 008-DEC-2010	07:21:36C	3835	229	114.5	76173	40	
12288038 008-DEC-2010	07:23:07C	5692	229	114.5	76133	\#\#	
14627216 008-DEC-2010	07:21:55C	11058	229	114.5	76356	\#\#	
14792775 008-DEC-2010	07:22:33C	2829	229	114.5	76412	\#\#	
14845192 008-DEC-2010	07:21:29C	365	229	114.5	76924	\#\#	
14988372 008-DEC-2010	07:22:21C	1225	229	114.5	76822	30	
10620950 008-DEC-2010	07:25:11C	865	229	114.5	57221	80	
12287704 008-DEC-2010	07:21:33C	14598	230	115	76338	\#\#	
12287715 008-DEC-2010	07:21:10C	1619	230	115	76222	\#\#	
12287891 008-DEC-2010	07:23:46C	4474	230	115	76500	50	
12287909 008-DEC-2010	07:21:48C	12510	230	115	76483	\#\#	
12288022 008-DEC-2010	07:21:12C	1221	230	115	76213	40	
12288026 008-DEC-2010	07:23:07C	4700	230	115	76144	\#\#	
14778957 008-DEC-2010	07:21:42C	2393	230	115	76600	30	
14845126 008-DEC-2010	07:21:20C	1166	230	115	76909	1	
14860293 008-DEC-2010	07:22:21C	1350	230	115	76823	30	
14988458 008-DEC-2010	07:26:05C	3747	230	115	76833	20	
15589094 008-DEC-2010	07:22:04C	2887	230	115	77053	10	
10620841 008-DEC-2010	07:23:41C	52209	230	115	57499	40	
10622393 008-DEC-2010	07:26:23C	8713	230	115	57123	50	
10622441 008-DEC-2010	07:24:32C	2489	230	115	57161	80	
10624891 008-DEC-2010	07:23:58C	9917	230	115	57098	\#\#	
11290297 008-DEC-2010	07:24:45C	19669	230	115	57176	80	
11303428 008-DEC-2010	07:26:23C	12993	230	115	57394	50	
11303875 008-DEC-2010	07:25:01C	12038	230	115	57397	\#\#	
11561163 008-DEC-2010	07:26:23C	15084	230	115	57128	50	
12287702 008-DEC-2010	07:22:07C	1	231	115.5	76226	30	
12287733 008-DEC-2010	07:21:36C	1298	231	115.5	76251	40	
12287765 008-DEC-2010	07:23:07C	5709	231	115.5	76201	\#\#	
12287782 008-DEC-2010	07:21:12C	390	231	115.5	76214	40	
12287971 008-DEC-2010	07:23:11C	13601	231	115.5	76439	80	
12287978 008-DEC-2010	07:22:29C	17578	231	115.5	76427	80	
12287998 008-DEC-2010	07:21:11C	1038	231	115.5	76161	\#\#	
12288012 008-DEC-2010	07:21:12C	3979	231	115.5	76216	40	
14589248 008-DEC-2010	07:21:43C	917	231	115.5	76973	1	

14626991008 -2010	07:21:27C	1436	231	115	76318	\#\#
14627009 008-DtC-2010	07:22:33C	10385	231	115.3	76411	\#\#
14627063 008-DEC-2010	07:21:38C	2433	231	115.5	76401	\#\#
14627224 008-DEC-2010	07:23:22C	8776	231	115.5	76283	\#\#
14627250 008-DEC-2010	07:22:59C	14979	231	115.5	76278	\#\#
10620949 008-DEC-2010	07:26:22C	1808	231	115.5	57256	\#\#
10620952 008-DEC-2010	07:21:25C	14506	231	115.5	57240	90
10620987 008-DEC-2010	07:23:41C	740	231	115.5	57247	40
10622370 008-DEC-2010	07:26:22C	0	231	115.5	57257	\#\#
10622395 008-DEC-2010	07:23:41C	6409	231	115.5	57270	40
11561194 008-DEC-2010	07:24:32C	587	231	115.5	57150	80
11561247 008-DEC-2010	07:24:45C	9844	231	115.5	57149	80
11739590 008-DEC-2010	07:21:37C	192	231	115.5	57316	60
12287696 008-DEC-2010	07:22:59C	12216	232	116	76240	\#\#
12287701 008-DEC-2010	07:22:07C	28473	232	116	76245	30
12287707 008-DEC-2010	07:21:33C	5120	232	116	76352	\#\#
12287726 008-DEC-2010	07:21:33C	8201	232	116	76229	\#\#
12287759 008-DEC-2010	07:21:11C	5984	232	116	76162	\#\#
12287894 008-DEC-2010	07:23:46C	2723	232	116	76508	50
12287913 008-DEC-2010	07:23:46C	3823	232	116	76498	50
12287949 008-DEC-2010	07:22:29C	10748	232	116	76423	80
12287996 008-DEC-2010	07:21:36C	7405	232	116	76176	40
14626792 008-DEC-2010	07:21:21C	404	232	116	76317	\#\#
14626995 008-DEC-2010	07:21:27C	9334	232	116	76324	\#\#
14627011 008-DEC-2010	07:21:17C	2054	232	116	76384	60
14627029 008-DEC-2010	07:21:27C	220	232	116	76325	\#\#
14627030 008-DEC-2010	07:21:27C	5582	232	116	76327	\#\#
14627051 008-DEC-2010	07:21:21C	10922	232	116	76319	\#\#
14627267 008-DEC-2010	07:23:46C	5122	232	116	76502	50
15589091 008-DEC-2010	07:22:37C	81	232	116	77052	10
10620760 008-DEC-2010	07:23:22C	23175	232	116	57506	40
10620770 008-DEC-2010	07:21:37C	325	232	116	57541	60
10620799 008-DEC-2010	07:26:23C	0	232	116	57126	50
10620823 008-DEC-2010	07:23:22C	1873	232	116	57520	40
10620969 008-DEC-2010	07:25:11C	10045	232	116	57219	80
10620972 008-DEC-2010	07:23:58C	1987	232	116	57209	\#\#
10622360 008-DEC-2010	07:23:55C	12797	232	116	57110	\#\#
10622397 008-DEC-2010	07:26:22C	7	232	116	57255	\#\#
10843480 008-DEC-2010	07:25:11C	927	232	116	57243	80

11290294008 -2010	07:23:58C	16620	232	1.4	57097	\#\#
12287690 008-DEC-2010	07:21:21C	10323	233	116.3	76322	\#\#
12287716 008-DEC-2010	07:22:07C	118	233	116.5	76248	30
12287719 008-DEC-2010	07:21:23C	121	233	116.5	76252	40
12287740 008-DEC-2010	07:21:38C	970	233	116.5	76249	\#\#
12287770 008-DEC-2010	07:21:12C	26	233	116.5	76200	40
12287916 008-DEC-2010	07:23:46C	6919	233	116.5	76497	50
12287974 008-DEC-2010	07:22:36C	7347	233	116.5	76454	50
12287995 008-DEC-2010	07:21:38C	11928	233	116.5	76149	\#\#
14626999 008-DEC-2010	07:21:24C	6893	233	116.5	76385	60
14627022 008-DEC-2010	07:22:12C	11685	233	116.5	76307	80
14627023 008-DEC-2010	07:22:12C	3163	233	116.5	76306	80
14627026 008-DEC-2010	07:21:33C	4	233	116.5	76335	\#\#
14627043 008-DEC-2010	07:21:10C	0	233	116.5	76320	\#\#
14627049 008-DEC-2010	07:21:40C	12522	233	116.5	76337	\#\#
14627052 008-DEC-2010	07:21:27C	7737	233	116.5	76334	\#\#
14627059 008-DEC-2010	07:21:33C	2648	233	116.5	76336	\#\#
14627200 008-DEC-2010	07:23:46C	5083	233	116.5	76507	50
14627229 008-DEC-2010	07:23:22C	3824	233	116.5	76291	\#\#
14627230 008-DEC-2010	07:23:22C	15051	233	116.5	76281	\#\#
14710386 008-DEC-2010	07:23:01C	1372	233	116.5	76654	10
14710464 008-DEC-2010	07:22:47C	1976	233	116.5	76642	10
14778947 008-DEC-2010	07:21:42C	2159	233	116.5	76563	30
14845166 008-DEC-2010	07:21:30C	19	233	116.5	76946	1
14988387 008-DEC-2010	07:23:57C	7303	233	116.5	76869	20
14988399 008-DEC-2010	07:23:57C	8555	233	116.5	76872	20
10620747 008-DEC-2010	07:24:32C	884	233	116.5	57497	80
10620819 008-DEC-2010	07:23:22C	286	233	116.5	57521	40
10620993 008-DEC-2010	07:24:31C	376	233	116.5	57117	\#\#
10622355 008-DEC-2010	07:25:51C	359	233	116.5	57106	\#\#
10622398 008-DEC-2010	07:24:32C	246	233	116.5	57175	80
10623255 008-DEC-2010	07:23:22C	5164	233	116.5	57504	40
10760721 008-DEC-2010	07:22:42C	8302	233	116.5	57154	30
11290303 008-DEC-2010	07:24:32C	8328	233	116.5	57178	80
11303359 008-DEC-2010	07:26:23C	8707	233	116.5	57391	50
11303371 008-DEC-2010	07:23:41C	5392	233	116.5	57371	40
11452756 008-DEC-2010	07:22:42C	2980	233	116.5	57589	30
11561219 008-DEC-2010	07:24:31C	3769	233	116.5	57118	\#\#
12287691 008-DEC-2010	07:22:07C	2139	234	117	76247	30

12287706008 -2010	07:21:27C	0	234	1	76224	\#\#
12287747 008-DEC-2010	07:21:36C	6174	234	117	76195	40
$12287748008-$ DEC-2010	07:21:12C	314	234	117	76197	40
$12287780008-$ DEC-2010	07:21:11C	11727	234	117	76172	\#\#
$12287937008-$ DEC-2010	07:23:46C	4	234	117	76469	50
$12287968008-$ DEC-2010	07:22:53C	3699	234	117	76456	50
$12287983008-$ DEC-2010	07:22:29C	9582	234	17	76437	80
12288020 008-DEC-2010	07:21:42C	632	234	17	76225	30
12288024 008-DEC-2010	07:21:38C	4196	234	117	76163	\#\#
12288027 008-DEC-2010	07:22:10C	4877	234	117	76134	\#\#
12288028 008-DEC-2010	07:23:57C	2594	234	117	76131	20
$14626824008-$ DEC-2010	07:21:21C	5439	234	117	76221	\#\#
$14626992008-$ DEC-2010	07:21:17C	4736	234	117	76367	60
$14626994008-$ DEC-2010	07:21:42C	4374	234	117	76392	60
$14626998008-$ DEC-2010	07:22:12C	10623	234	117	76394	60
$14627003008-$ DEC-2010	07:21:17C	793	234	117	76382	60
14627018008 -DEC-2010	07:21:17C	0	234	117	76383	60
14627045 008-DEC-2010	07:21:21C	11005	234	117	76321	\#\#
14627056 008-DEC-2010	07:21:55C	16493	234	117	76355	\#\#
14627233 008-DEC-2010	07:22:12C	7495	234	117	76285	80
$14627234008-$ DEC-2010	07:22:07C	24	234	117	76228	30
$14710439008-$ DEC-2010	07:22:37C	227	234	117	76662	10
14845070008 -DEC-2010	07:21:29C	199	234	117	76921	\#\#
14845187008 -DEC-2010	07:21:43C	1031	234	117	76947	1
14845205008 -DEC-2010	07:21:43C	1022	234	117	76948	1
14988368008 -DEC-2010	07:21:36C	150	234	117	76837	40
$14988389008-$ DEC-2010	07:21:36C	3	234	117	76892	40
$14988393008-$ DEC-2010	07:21:36C	3542	234	117	76839	40
$14988406008-$ DEC-2010	07:21:36C	347	234	117	76851	40
15589105008 -DEC-2010	07:22:10C	254	234	117	77068	10
$15589119008-$-DEC-2010	07:22:04C	64	234	117	77044	10
15589142008 -DEC-2010	07:22:04C	131	234	117	77042	10
10025753 008-DEC-2010	07:24:48C	66	234	117	57305	10
$10620746008-$-DEC-2010	07:23:22C	15273	234	117	57517	40
$10620761008-$ DEC-2010	07:22:42C	1593	234	117	57548	30
10620827 008-DEC-2010	07:23:22C	2084	234	117	57522	40
10620943008 -DEC-2010	07:25:59C	2126	234	117	57231	\#\#
10620963 008-DEC-2010	07:23:22C	1422	234	117	57515	40
10621008 008-DEC-2010	07:23:41C	5309	234	117	57267	40

10621026008 -2010	07:23:07C	934	234	1	57509	40
10622136 008-DEC-2010	07:25:11C	54	234	$11 /$	57220	80
10957055 008-DEC-2010	07:23:22C	5496	234	117	57574	40
11281672 008-DEC-2010	07:24:32C	13857	234	117	57276	80
11290299 008-DEC-2010	07:24:32C	1734	234	117	57177	80
11303353 008-DEC-2010	07:26:22C	557	234	117	57234	\#\#
11441158 008-DEC-2010	07:25:38C	1258	234	117	57224	80
11561178 008-DEC-2010	07:22:07C	6635	234	117	57187	60
11561222 008-DEC-2010	07:26:22C	139	234	117	57143	\#\#
12287699 008-DEC-2010	07:23:22C	8774	235	117.5	76243	\#\#
12287708 008-DEC-2010	07:21:23C	21625	235	117.5	76234	40
12287742 008-DEC-2010	07:21:12C	471	235	117.5	76215	40
12287914 008-DEC-2010	07:21:42C	842	235	117.5	76493	\#\#
12287920 008-DEC-2010	07:22:02C	7085	235	117.5	76487	50
12287961 008-DEC-2010	07:23:07C	2409	235	117.5	76217	\#\#
12287969 008-DEC-2010	07:23:46C	1891	235	117.5	76470	50
12288034 008-DEC-2010	07:21:38C	7686	235	117.5	76138	\#\#
14626980 008-DEC-2010	07:21:17C	5313	235	117.5	76380	60
14627001 008-DEC-2010	07:21:24C	9297	235	117.5	76406	60
14627010 008-DEC-2010	07:21:48C	12597	235	117.5	76389	60
14627054 008-DEC-2010	07:21:27C	6027	235	117.5	76341	\#\#
14627243 008-DEC-2010	07:21:02C	780	235	117.5	76275	\#\#
14627248 008-DEC-2010	07:22:59C	9284	235	117.5	76292	\#\#
14627251 008-DEC-2010	07:23:22C	9627	235	117.5	76284	\#\#
14627258 008-DEC-2010	07:23:46C	7845	235	117.5	76504	50
14778964 008-DEC-2010	07:21:42C	2570	235	117.5	76562	30
14779003 008-DEC-2010	07:21:13C	2076	235	117.5	76578	30
14779027 008-DEC-2010	07:21:42C	3641	235	117.5	76564	30
14845127 008-DEC-2010	07:21:29C	533	235	117.5	76922	\#\#
14988438 008-DEC-2010	07:26:05C	3043	235	117.5	76834	20
15589081 008-DEC-2010	07:22:04C	110	235	117.5	77038	10
15589117 008-DEC-2010	07:22:04C	118	235	117.5	77040	10
10620749 008-DEC-2010	07:22:07C	524	235	117.5	57590	60
10620752 008-DEC-2010	07:22:37C	7682	235	117.5	57204	\#\#
10620828 008-DEC-2010	07:23:06C	422	235	117.5	57500	40
10621005 008-DEC-2010	07:23:06C	13550	235	117.5	57319	40
10621011 008-DEC-2010	07:26:22C	19	235	117.5	57511	\#
10622350 008-DEC-2010	07:23:58C	426	235	117.5	57263	\#\#
10622353 008-DEC-2010	07:22:07C	815	235	117.5	57153	60

10622387008 --2010	07:23:58C	5534	235	117	57233	\#\#
10622390 008-DEC-2010	07:22:14C	2	235	117.3	57105	\#\#
10623774 008-DEC-2010	07:25:11C	1391	235	117.5	57222	80
10757667 008-DEC-2010	07:25:59C	1818	235	117.5	57258	\#\#
10762198 008-DEC-2010	07:25:11C	2024	235	117.5	57160	80
10933135 008-DEC-2010	07:24:50C	23671	235	117.5	57576	\#\#
10952999 008-DEC-2010	07:25:38C	5986	235	117.5	57428	\#\#
11303360 008-DEC-2010	07:21:37C	7272	235	117.5	57382	60
11303395 008-DEC-2010	07:24:35C	2926	235	117.5	57303	10
11558447 008-DEC-2010	07:22:07C	36935	235	117.5	57588	60
11561238 008-DEC-2010	07:27:59C	62	235	117.5	57166	20
12287721 008-DEC-2010	07:21:38C	18710	236	118	76253	40
12287724 008-DEC-2010	07:21:12C	16307	236	118	76265	40
12287743 008-DEC-2010	07:21:38C	4588	236	118	76183	40
12287750 008-DEC-2010	07:21:18C	5036	236	118	76175	40
12287763 008-DEC-2010	07:21:38C	7933	236	118	76182	40
12287783 008-DEC-2010	07:21:23C	4950	236	118	76191	40
12287910 008-DEC-2010	07:22:29C	2470	236	118	76424	80
12287946 008-DEC-2010	07:23:11C	167	236	118	76440	80
12287950 008-DEC-2010	07:22:29C	2764	236	118	76433	80
12287962 008-DEC-2010	07:21:09C	10464	236	118	76436	50
12287987 008-DEC-2010	07:22:52C	12234	236	118	76434	80
12288014 008-DEC-2010	07:22:10C	1591	236	118	76135	\#\#
14589268 008-DEC-2010	07:24:28C	1470	236	118	76960	10
14626981 008-DEC-2010	07:22:12C	8937	236	118	76408	60
14627024 008-DEC-2010	07:22:29C	74	236	118	76294	80
14627028 008-DEC-2010	07:21:17C	12052	236	118	76331	60
14627034 008-DEC-2010	07:22:29C	2494	236	118	76293	80
14627035 008-DEC-2010	07:22:52C	1313	236	118	76296	80
14627253 008-DEC-2010	07:23:11C	4012	236	118	76269	80
14627255 008-DEC-2010	07:23:11C	75	236	118	76295	80
14627263 008-DEC-2010	07:21:42C	9280	236	118	76244	30
14710421 008-DEC-2010	07:22:37C	90	236	118	76661	10
14710429 008-DEC-2010	07:23:01C	2926	236	118	76649	10
14988365 008-DEC-2010	07:25:11C	3951	236	118	76829	20
14988397 008-DEC-2010	07:21:42C	2385	236	118	76824	30
14988457 008-DEC-2010	07:26:05C	585	236	118	76836	20
15589071 008-DEC-2010	07:22:04C	1769	236	118	77021	10
10620783 008-DEC-2010	07:24:35C	4045	236	118	57518	10

10620818008 -2010	07:23:41C	1469	236	$1{ }^{-}$	57572	40
10620832 008-DEC-2010	07:21:27C	16427	236	118	57527	90
10620947 008-DEC-2010	07:21:27C	10332	236	118	57280	90
10620953 008-DEC-2010	07:23:41C	1874	236	118	57250	40
10620978 008-DEC-2010	07:24:06C	9478	236	118	57235	80
10620979 008-DEC-2010	07:23:58C	9358	236	118	57265	\#\#
10621022 008-DEC-2010	07:25:38C	477	236	118	57563	\#\#
0621038 008-DEC-2010	07:22:40C	99165	236	118	57525	40
622380 008-DEC-2010	07:24:06C	12891	236	118	57198	80
0761238 008-DEC-2010	07:24:32C	12956	236	118	57275	80
815681 008-DEC-2010	07:25:01C	16199	236	118	57216	\#
881921 008-DEC-2010	07:21:37C	75	236	118	57174	60
10821922 008-DEC-2	07:24:48C	71278	236	118	57309	0
10844575 008-DEC-2010	07:22:34C	97211	236	118	57339	60
11303357 008-DEC-2010	07:22:07C	2198	236	118	57376	60
$11303402008-$ DEC-2010	07:25:26C	18697	236	118	57358	10
11561191 008-DEC-2010	07:23:06C	707	236	118	57141	40
$12287692008-$ DEC-2010	07:21:27C	0	237	118.5	76223	\#\#
$12287700008-$ DEC-2010	07:22:59C	1244	237	118.5	76258	\#\#
12287739 008-DEC-2010	07:22:12C	598	237	118.5	76308	80
$12287746008-$ DEC-2010	07:21:18C	6340	237	118.5	76190	40
12287773 008-DEC-2010	07:22:53C	10117	237	118.5	76171	\#\#
12287778 008-DEC-2010	07:22:12C	501	237	118.5	76159	60
12287779 008-DEC-2010	07:21:36C	1429	237	118.5	76205	40
12287781 008-DEC-2010	07:20:59C	2221	237	118.5	76239	90
12287986 008-DEC-2010	07:23:11C	17990	237	118.5	76421	80
12288007 008-DEC-2010	07:21:38C	6850	237	118.5	76139	\#\#
$14589235008-\mathrm{DEC}-2010$	07:21:200	1704	237	118.5	76928	1
14626983 008-DEC-2010	07:21:38C	177	237	118.5	2	\#\#
$14627000008-$ DEC-2010	07:21:21C	3391	237	118.5	76323	\#
$14627005008-\mathrm{DEC}-2010$	07:21:24C	6806	237	118.5	76388	60
14627021 008-DEC-2010	07:20:59C	19	237	118.5	76238	90
14627225 008-DEC-2010	07:23:22C	11803	237	118.5	76289	\#\#
14627262008 -DEC-2010	07:23:46C	3053	237	118.5	76503	50
14710417 008-DEC-2010	07:21:43C	125	237	118.5	76648	1
14710442 008-DEC-2010	07:23:01C	162	237	118.5	76651	10
$14778939008-\mathrm{DEC}-2010$	07:21:37C	184	237	118.5	76527	30
$14845129008-D E C-2010$	07:21:25C	955	237	118.5	76896	1
14988408008 -DEC-2010	07:25:11C	240	237	118.5	76858	20

14988464008 --2010	07:21:23C	2887	237	118	76827	40
15589123 008-DะC-2010	07:22:37C	0	237	118.3	77051	10
15589131 008-DEC-2010	07:22:37C	168	237	118.5	77047	10
10620742 008-DEC-2010	07:22:40C	8835	237	118.5	57507	40
10620759 008-DEC-2010	07:22:40C	2755	237	118.5	57502	40
10620765 008-DEC-2010	07:22:40C	0	237	118.5	57491	40
10620774 008-DEC-2010	07:22:40C	5034	237	118.5	57494	40
10620795 008-DEC-2010	07:41:24C	2228	237	118.5	57493	40
10620801 008-DEC-2010	07:22:40C	2909	237	118.5	57508	40
10620806 008-DEC-2010	07:22:40C	4679	237	118.5	57510	40
10620814 008-DEC-2010	07:22:40C	20843	237	118.5	57489	40
10620817 008-DEC-2010	07:25:59C	4	237	118.5	57495	\#\#
10620821 008-DEC-2010	07:22:40C	844	237	118.5	57488	40
10620838 008-DEC-2010	07:23:07C	0	237	118.5	57490	40
10620967 008-DEC-2010	07:26:22C	16628	237	118.5	57271	\#\#
10620996 008-DEC-2010	07:23:07C	0	237	118.5	57487	40
10621025 008-DEC-2010	07:23:22C	3293	237	118.5	57516	40
10621035 008-DEC-2010	07:26:22C	282	237	118.5	57545	\#\#
10622364 008-DEC-2010	07:24:06C	950	237	118.5	57159	80
10622414 008-DEC-2010	07:24:32C	7922	237	118.5	57197	80
10622435 008-DEC-2010	07:24:06C	1911	237	118.5	57236	80
10623269 008-DEC-2010	07:21:25C	17322	237	118.5	57279	90
10623277 008-DEC-2010	07:21:25C	0	237	118.5	57544	90
10770991 008-DEC-2010	07:26:57C	9638	237	118.5	57229	50
10817536 008-DEC-2010	07:22:40C	1373	237	118.5	57311	40
10843032 008-DEC-2010	07:25:55C	2817	237	118.5	57330	50
10844133 008-DEC-2010	07:24:06C	2034	237	118.5	57244	80
11303422 008-DEC-2010	07:24:50C	133	237	118.5	57459	\#\#
11441464 008-DEC-2010	07:22:35C	0	237	118.5	57345	30
11561164 008-DEC-2010	07:24:06C	6207	237	118.5	57148	80
11561186 008-DEC-2010	07:23:22C	1188	237	118.5	57140	40
11561216 008-DEC-2010	07:23:58C	16800	237	118.5	57096	\#\#
11561240 008-DEC-2010	07:23:58C	25	237	118.5	57095	\#\#
11561245 008-DEC-2010	07:22:35C	0	237	118.5	57163	30
11561248 008-DEC-2010	07:24:06C	245	237	118.5	57147	80
12287697 008-DEC-2010	07:21:42C	12777	238	119	76271	\#\#
12287731 008-DEC-2010	07:21:42C	27	238	119	76242	30
12287754 008-DEC-2010	07:21:44C	2908	238	119	76184	40
12287771 008-DEC-2010	07:21:44C	978	238	119	76181	40

12287908 008- 2010	07:21:04C	4120	238	11	76484	\#\#
12287984 008-DEC-2010	07:23:11C	7781	238	119	76422	80
12287988 008-DEC-2010	07:21:11C	2144	238	119	76156	\#\#
12287997 008-DEC-2010	07:22:53C	3206	238	119	76155	\#\#
12287999 008-DEC-2010	07:21:11C	3234	238	119	76154	\#\#
12288023 008-DEC-2010	07:22:10C	5562	238	119	76136	\#\#
12288025 008-DEC-2010	07:23:07C	2374	238	119	76126	\#\#
14587121 008-DEC-2010	07:21:29C	440	238	119	76670	\#\#
14589240 008-DEC-2010	07:24:28C	1350	238	119	76958	10
14589250 008-DEC-2010	07:24:28C	34	238	119	76919	10
14626974 008-DEC-2010	07:22:52C	517	238	119	76426	80
14626979 008-DEC-2010	07:21:40C	14968	238	119	76351	\#\#
14626987 008-DEC-2010	07:21:21C	513	238	119	76348	\#\#
14627002 008-DEC-2010	07:21:24C	25	238	119	76393	60
14627012 008-DEC-2010	07:21:17C	3888	238	119	76378	60
14627013 008-DEC-2010	07:21:17C	0	238	119	76381	60
14627223 008-DEC-2010	07:21:42C	6751	238	119	76310	\#\#
14627257 008-DEC-2010	07:22:09C	4584	238	119	76276	\#\#
14710399 008-DEC-2010	07:21:23C	927	238	119	76689	\#\#
14710467 008-DEC-2010	07:23:23C	2998	238	119	76633	10
14778948 008-DEC-2010	07:21:42C	2555	238	119	76597	30
14792123 008-DEC-2010	07:22:10C	3695	238	119	76218	\#\#
14845091 008-DEC-2010	07:21:17C	3360	238	119	76923	\#\#
14845119 008-DEC-2010	07:24:28C	284	238	119	76920	10
14845132 008-DEC-2010	07:21:20C	731	238	119	76897	1
14845165 008-DEC-2010	07:21:20C	1354	238	119	76899	1
14845176 008-DEC-2010	07:21:55C	1104	238	119	76907	\#\#
14845204 008-DEC-2010	07:21:43C	651	238	119	76945	1
14860273 008-DEC-2010	07:26:05C	2496	238	119	76855	20
14988371 008-DEC-2010	07:26:05C	4134	238	119	76854	20
14988376 008-DEC-2010	07:25:11C	3159	238	119	76831	20
14988378 008-DEC-2010	07:23:57C	3992	238	119	76871	20
14988388 008-DEC-2010	07:23:57C	157	238	119	76870	20
14988403 008-DEC-2010	07:21:18C	2558	238	119	76838	40
15589062 008-DEC-2010	07:22:37C	90	238	119	77049	10
15589080 008-DEC-2010	07:22:04C	1	238	119	77056	10
15589089 008-DEC-2010	07:22:37C	1166	238	119	77050	10
10620767 008-DEC-2010	07:22:40C	44368	238	119	57524	40
10620779 008-DEC-2010	07:41:24C	0	238	119	57492	40

10620780 008- -2010	07:25:17C	22779	238	1.	57555	\#\#
10620787 008-DEC-2010	07:21:25C	3066	238	119	57528	90
10620983 008-DEC-2010	07:23:30C	3675	238	119	57546	80
10621004 008-DEC-2010	07:25:59C	9552	238	119	57264	\#\#
10621020 008-DEC-2010	07:25:01C	6012	238	119	57218	\#\#
10621024 008-DEC-2010	07:41:24C	1	238	119	57505	40
10622356 008-DEC-2010	07:25:38C	141	238	119	57212	80
10622373 008-DEC-2010	07:24:50C	1613	238	119	57104	\#\#
10758820 008-DEC-2010	07:25:17C	207	238	119	57112	\#\#
10764713 008-DEC-2010	07:25:17C	308	238	119	57557	\#\#
10815672 008-DEC-2010	07:22:35C	0	238	119	57292	30
10843985 008-DEC-2010	07:25:01C	12237	238	119	57217	\#\#
10933086 008-DEC-2010	07:24:50C	11165	238	119	57578	\#\#
10955032 008-DEC-2010	07:24:50C	1272	238	119	57430	\#\#
11302987 008-DEC-2010	07:22:40C	206	238	119	57354	40
11303408 008-DEC-2010	07:22:40C	20445	238	119	57523	40
11303419 008-DEC-2010	07:24:50C	7650	238	119	57347	\#\#
11561231 008-DEC-2010	07:22:35C	48	238	119	57165	30
12287705 008-DEC-2010	07:21:06C	717	239	119.5	76332	60
12287735 008-DEC-2010	07:23:11C	74	239	119.5	76270	80
12287736 008-DEC-2010	07:21:44C	2266	239	119.5	76208	40
12287892 008-DEC-2010	07:22:02C	0	239	119.5	76488	50
12287981 008-DEC-2010	07:23:17C	4249	239	119.5	76448	50
12288009 008-DEC-2010	07:22:33C	8066	239	119.5	76142	\#\#
14589249 008-DEC-2010	07:21:25C	1000	239	119.5	76987	1
14626969 008-DEC-2010	07:21:11C	6230	239	119.5	76398	\#\#
14626977 008-DEC-2010	07:21:21C	6697	239	119.5	76342	\#\#
14626984 008-DEC-2010	07:21:33C	7147	239	119.5	76364	\#\#
14627006 008-DEC-2010	07:21:17C	11207	239	119.5	76402	60
14627007 008-DEC-2010	07:21:11C	688	239	119.5	76371	\#\#
14627238 008-DEC-2010	07:23:29C	2296	239	119.5	76261	\#\#
14710400 008-DEC-2010	07:23:23C	1401	239	119.5	76663	10
14710418 008-DEC-2010	07:21:17C	406	239	119.5	76687	\#\#
14710419 008-DEC-2010	07:21:43C	5	239	119.5	76646	1
14710420 008-DEC-2010	07:21:17C	620	239	119.5	76680	\#\#
14711846 008-DEC-2010	07:23:07C	3374	239	119.5	76613	10
14778943 008-DEC-2010	07:21:37C	3361	239	119.5	76530	30
14778945 008-DEC-2010	07:21:42C	1104	239	119.5	76598	30
14779005 008-DEC-2010	07:21:42C	2835	239	119.5	76599	30

14779018 008- -2010	07:21:37C	951	239	119	76529	30
14860274 008-DEC-2010	07:23:57C	5597	239	119.5	76878	20
14988407 008-DEC-2010	07:25:11C	3056	239	119.5	76860	20
14988412 008-DEC-2010	07:21:55C	4820	239	119.5	76841	40
14988435 008-DEC-2010	07:21:55C	2835	239	119.5	76812	40
15589102 008-DEC-2010	07:22:04C	206	239	119.5	77055	10
10620751 008-DEC-2010	07:25:10C	1896	239	119.5	57561	50
10620965 008-DEC-2010	07:25:17C	3731	239	119.5	57558	\#\#
10620994 008-DEC-2010	07:25:59C	110	239	119.5	57207	\#\#
10620995 008-DEC-2010	07:23:58C	13926	239	119.5	57272	\#\#
10622347 008-DEC-2010	07:25:17C	1359	239	119.5	57168	\#\#
10622401 008-DEC-2010	07:25:38C	672	239	119.5	57152	\#\#
10643213 008-DEC-2010	07:24:50C	1996	239	119.5	57338	\#\#
10791373 008-DEC-2010	07:22:35C	40925	239	119.5	57302	30
10955118 008-DEC-2010	07:23:47C	22950	239	119.5	57592	80
11280041 008-DEC-2010	07:25:51C	3536	239	119.5	57295	\#\#
11290296 008-DEC-2010	07:25:01C	3798	239	119.5	57215	\#\#
11300322 008-DEC-2010	07:22:14C	478	239	119.5	57387	\#\#
11303388 008-DEC-2010	07:24:32C	9	239	119.5	57392	80
11303424 008-DEC-2010	07:25:17C	12402	239	119.5	57337	\#\#
11303427 008-DEC-2010	07:22:26C	787	239	119.5	57386	\#\#
11303440 008-DEC-2010	07:23:07C	1765	239	119.5	57326	40
11303666 008-DEC-2010	07:25:17C	19969	239	119.5	57377	\#\#
12287688 008-DEC-2010	07:21:12C	1864	240	120	76264	40
12287727 008-DEC-2010	07:21:42C	35763	240	120	76232	\#\#
12287755 008-DEC-2010	07:21:23C	4963	240	120	76188	40
12287766 008-DEC-2010	07:21:36C	5959	240	120	76174	40
12287774 008-DEC-2010	07:21:18C	6027	240	120	76180	40
12287784 008-DEC-2010	07:21:23C	250	240	120	76187	40
12287899 008-DEC-2010	07:21:04C	5591	240	120	76482	\#\#
12287927 008-DEC-2010	07:21:04C	25806	240	120	76477	\#\#
12287932 008-DEC-2010	07:21:04C	9301	240	120	76479	\#\#
12287953 008-DEC-2010	07:21:43C	2990	240	120	76475	1
14589259 008-DEC-2010	07:21:29C	521	240	120	76966	\#\#
14626814 008-DEC-2010	07:22:10C	11266	240	120	76125	\#\#
14627014 008-DEC-2010	07:21:24C	10230	240	120	76396	60
14627047 008-DEC-2010	07:21:27C	9603	240	120	76344	\#\#
14627065 008-DEC-2010	07:21:33C	2978	240	120	76350	\#\#
14627241 008-DEC-2010	07:21:06C	760	240	120	76301	80

14627242 008- -2010	07:21:42C	7176	240	12	76273	\#\#
14710368 008-DtC-2010	07:23:01C	1246	240	120	76656	10
14710407 008-DEC-2010	07:23:01C	446	240	120	76650	10
14710410 008-DEC-2010	07:22:43C	1013	240	120	76699	10
14710433 008-DEC-2010	07:23:01C	77	240	120	76631	10
14710434 008-DEC-2010	07:23:01C	621	240	120	76652	10
14710441 008-DEC-2010	07:23:01C	818	240	120	76655	10
14711830 008-DEC-2010	07:23:23C	969	240	120	76619	10
14711878 008-DEC-2010	07:23:23C	5	240	120	76620	10
14779008 008-DEC-2010	07:21:19C	3061	240	120	76554	30
14779024 008-DEC-2010	07:21:42C	494	240	120	76594	30
14779026 008-DEC-2010	07:21:37C	1524	240	120	76532	30
14845133 008-DEC-2010	07:37:28C	620	240	120	76894	1
14845162 008-DEC-2010	07:21:25C	1212	240	120	76931	1
14845177 008-DEC-2010	07:22:48C	239	240	120	76970	\#\#
14988366 008-DEC-2010	07:23:57C	4317	240	120	76891	20
14988369 008-DEC-2010	07:25:11C	2533	240	120	76830	20
14988384 008-DEC-2010	07:24:42C	715	240	120	76874	20
14988410 008-DEC-2010	07:25:11C	153	240	120	76832	20
14988419 008-DEC-2010	07:21:27C	3213	240	120	76808	20
15589078 008-DEC-2010	07:23:23C	475	240	120	77080	10
15589108 008-DEC-2010	07:22:37C	0	240	120	77045	10
15589122 008-DEC-2010	07:22:04C	90	240	120	77023	10
15589124 008-DEC-2010	07:21:19C	2057	240	120	77034	10
15589132 008-DEC-2010	07:22:37C	106	240	120	76998	10
15589195 008-DEC-2010	07:22:04C	387	240	120	77054	10
10620805 008-DEC-2010	07:26:57C	0	240	120	57259	50
10620954 008-DEC-2010	07:24:32C	38807	240	120	57286	80
10620980 008-DEC-2010	07:24:32C	7874	240	120	57277	80
10621001 008-DEC-2010	07:23:07C	649	240	120	57584	40
10621016 008-DEC-2010	07:21:59C	5460	240	120	57480	90
10621030 008-DEC-2010	07:25:59C	7548	240	120	57191	\#\#
10621037 008-DEC-2010	07:22:35C	58078	240	120	57301	30
10622363 008-DEC-2010	07:22:49C	3387	240	120	57205	\#\#
10622382 008-DEC-2010	07:23:22C	3931	240	120	57100	40
10622409 008-DEC-2010	07:23:36C	1455	240	120	57102	30
10622418 008-DEC-2010	07:24:32C	15776	240	120	57283	80
10622436 008-DEC-2010	07:22:15C	24	240	120	57268	40
10759104 008-DEC-2010	07:22:09C	29599	240	120	57513	1

10770997 008- -2010	07:23:22C	30582	240	12	57560	40
10787769 008-DtC-2010	07:24:50C	660	240	120	57336	\#\#
10787987 008-DEC-2010	07:27:40C	1140	240	120	57315	20
10846278 008-DEC-2010	07:24:50C	605	240	120	57375	\#\#
10951745 008-DEC-2010	07:23:58C	870	240	120	57429	\#\#
11280922 008-DEC-2010	07:21:25C	6674	240	120	57281	90
11281652 008-DEC-2010	07:23:58C	9188	240	120	57273	\#\#
11302935 008-DEC-2010	07:26:57C	7689	240	120	57441	50
11303363 008-DEC-2010	07:25:02C	449	240	120	57355	10
11303413 008-DEC-2010	07:23:07C	68	240	120	57378	40
11303414 008-DEC-2010	07:23:07C	7754	240	120	57343	40
11303417 008-DEC-2010	07:24:12C	3	240	120	57398	\#\#
11561157 008-DEC-2010	07:24:50C	13431	240	120	57181	\#\#
11561165 008-DEC-2010	07:25:17C	15827	240	120	57185	\#\#
11561167 008-DEC-2010	07:22:19C	2937	240	120	57108	90
11561174 008-DEC-2010	07:22:09C	4633	240	120	57139	1
11561201 008-DEC-2010	07:23:07C	5898	240	120	57183	40
11561217 008-DEC-2010	07:25:31C	1102	240	120	57188	\#\#
12287711 008-DEC-2010	07:21:18C	880	241	120.5	76236	40
12287738 008-DEC-2010	07:22:53C	7234	241	120.5	76167	\#\#
12287744 008-DEC-2010	07:21:23C	1107	241	120.5	76192	40
12287745 008-DEC-2010	07:21:23C	2172	241	120.5	76189	40
12287753 008-DEC-2010	07:21:44C	7243	241	120.5	76199	40
12287756 008-DEC-2010	07:22:33C	1243	241	120.5	76202	\#\#
12287767 008-DEC-2010	07:21:23C	4077	241	120.5	76194	40
12287903 008-DEC-2010	07:22:01C	8718	241	120.5	76480	\#\#
12287924 008-DEC-2010	07:23:46C	465	241	120.5	76472	50
12287928 008-DEC-2010	07:21:04C	11994	241	120.5	76478	\#\#
12287952 008-DEC-2010	07:21:23C	3768	241	120.5	76196	40
12287966 008-DEC-2010	07:22:52C	5000	241	120.5	76438	80
12287976 008-DEC-2010	07:22:12C	7762	241	120.5	76403	60
12287991 008-DEC-2010	07:22:10C	4984	241	120.5	76127	\#\#
12288000 008-DEC-2010	07:22:10C	4823	241	120.5	76145	\#\#
12288010 008-DEC-2010	07:21:23C	93	241	120.5	76186	40
12288011 008-DEC-2010	07:22:33C	4193	241	120.5	76132	\#\#
14589238 008-DEC-2010	07:21:35C	1116	241	120.5	76963	\#\#
14589239 008-DEC-2010	07:21:36C	1311	241	120.5	76961	\#\#
14589243 008-DEC-2010	07:21:29C	750	241	120.5	76965	\#\#
14589246 008-DEC-2010	07:21:20C	760	241	120.5	76900	1

14589251 008- 2010	07:21:29C	887	241	120	76954	\#\#
14589252 008-DtC-2010	07:21:43C	891	241	120.3	76974	1
14589258 008-DEC-2010	07:21:30C	1268	241	120.5	76975	1
14589307 008-DEC-2010	07:21:43C	589	241	120.5	76976	1
14626975 008-DEC-2010	07:21:17C	11764	241	120.5	76404	60
14627004 008-DEC-2010	07:21:42C	3811	241	120.5	76390	60
14627020 008-DEC-2010	07:22:09C	3745	241	120.5	76315	\#\#
14627037 008-DEC-2010	07:21:06C	7517	241	120.5	76366	60
14627042 008-DEC-2010	07:22:09C	7261	241	120.5	76309	\#\#
14627057 008-DEC-2010	07:22:06C	18394	241	120.5	76339	\#\#
14627062 008-DEC-2010	07:21:21C	5007	241	120.5	76345	\#\#
14627066 008-DEC-2010	07:21:10C	5468	241	120.5	76347	\#\#
14627067 008-DEC-2010	07:21:06C	5119	241	120.5	76329	60
14627227 008-DEC-2010	07:21:42C	36	241	120.5	76311	\#\#
14627232 008-DEC-2010	07:21:44C	2600	241	120.5	76266	40
14627236 008-DEC-2010	07:21:06C	15488	241	120.5	76288	80
14627244 008-DEC-2010	07:21:06C	1403	241	120.5	76304	80
14627249 008-DEC-2010	07:21:06C	12383	241	120.5	76287	80
14710436 008-DEC-2010	07:23:01C	550	241	120.5	76653	10
14778962 008-DEC-2010	07:21:37C	167	241	120.5	76559	30
14779009 008-DEC-2010	07:21:37C	860	241	120.5	76557	30
14845121 008-DEC-2010	07:24:28C	567	241	120.5	76918	10
14860268 008-DEC-2010	07:26:21C	32	241	120.5	76853	20
14988379 008-DEC-2010	07:25:11C	8	241	120.5	76857	20
14988381 008-DEC-2010	07:24:42C	7112	241	120.5	76814	20
14988382 008-DEC-2010	07:24:26C	3	241	120.5	76888	20
14988405 008-DEC-2010	07:24:26C	725	241	120.5	76885	20
14988414 008-DEC-2010	07:24:42C	5077	241	120.5	76876	20
14988452 008-DEC-2010	07:23:26C	3876	241	120.5	76806	20
15589075 008-DEC-2010	07:23:23C	2023	241	120.5	77073	10
15589093 008-DEC-2010	07:22:04C	126	241	120.5	77022	10
15589109 008-DEC-2010	07:21:19C	128	241	120.5	77033	10
10620758 008-DEC-2010	07:22:40C	10283	241	120.5	57568	40
10620803 008-DEC-2010	07:24:31C	9593	241	120.5	57115	\#\#
10620820 008-DEC-2010	07:22:55C	1172	241	120.5	57317	30
10620959 008-DEC-2010	07:22:34C	2786	241	120.5	57111	60
10620974 008-DEC-2010	07:24:31C	10541	241	120.5	57242	\#\#
10620988 008-DEC-2010	07:21:27C	887	241	120.5	57282	90
10620997 008-DEC-2010	07:25:59C	697	241	120.5	57202	\#\#

10621002 008- -2010	07:24:14C	1195	241	120	57579	\#\#
10621009 008-DEC-2010	07:24:32C	10170	241	120.5	57285	80
10621019 008-DEC-2010	07:41:48C	9233	241	120.5	57533	\#\#
10622374 008-DEC-2010	07:25:59C	8754	241	120.5	57200	\#\#
10622420 008-DEC-2010	07:27:18C	14100	241	120.5	57230	50
10624869 008-DEC-2010	07:25:59C	11040	241	120.5	57146	\#\#
10757421 008-DEC-2010	07:25:59C	9317	241	120.5	57199	\#\#
10758097 008-DEC-2010	07:25:31C	1945	241	120.5	57114	\#\#
10764385 008-DEC-2010	07:25:59C	8836	241	120.5	57193	\#\#
10775246 008-DEC-2010	07:22:40C	13965	241	120.5	57351	40
10921298 008-DEC-2010	07:24:50C	5218	241	120.5	57335	\#\#
10922364 008-DEC-2010	07:23:36C	28353	241	120.5	57300	30
10924857 008-DEC-2010	07:21:25C	729	241	120.5	57208	90
10930471 008-DEC-2010	07:24:50C	223	241	120.5	57571	\#\#
11290292 008-DEC-2010	07:22:40C	5364	241	120.5	57313	40
11300944 008-DEC-2010	07:25:38C	1363	241	120.5	57411	\#\#
11303369 008-DEC-2010	07:22:40C	31710	241	120.5	57323	40
11303398 008-DEC-2010	07:41:24C	2413	241	120.5	57344	40
11303439 008-DEC-2010	07:25:38C	12827	241	120.5	57478	80
11303864 008-DEC-2010	07:25:38C	16906	241	120.5	57476	80
11561161 008-DEC-2010	07:21:27C	392	241	120.5	57109	90
12287712 008-DEC-2010	07:23:22C	134	242	121	76280	\#\#
12287717 008-DEC-2010	07:21:18C	249	242	121	76235	40
12287718 008-DEC-2010	07:21:18C	6417	242	121	76193	40
12287737 008-DEC-2010	07:22:53C	8440	242	121	76166	\#\#
12287761 008-DEC-2010	07:22:53C	4540	242	121	76170	\#\#
12287776 008-DEC-2010	07:21:23C	3575	242	121	76185	40
12287906 008-DEC-2010	07:22:02C	9947	242	121	76491	50
12287912 008-DEC-2010	07:23:17C	3764	242	121	76445	50
12287939 008-DEC-2010	07:22:12C	6972	242	121	76441	80
12287948 008-DEC-2010	07:21:09C	6672	242	121	76435	50
12288029 008-DEC-2010	07:22:33C	7241	242	121	76130	\#\#
14589127 008-DEC-2010	07:21:20C	2394	242	121	76988	1
14589231 008-DEC-2010	07:21:29C	451	242	121	76955	\#\#
14626973 008-DEC-2010	07:21:10C	16219	242	121	76359	\#\#
14626976 008-DEC-2010	07:21:33C	14169	242	121	76362	\#\#
14626985 008-DEC-2010	07:21:17C	211	242	121	76368	60
14627019 008-DEC-2010	07:21:40C	2872	242	121	76363	\#\#
14627032 008-DEC-2010	07:21:40C	8246	242	121	76361	\#\#

14627048 008- -2010	07:21:10C	6918	242	12	76343	\#\#
14627055 008-DEC-2010	07:21:21C	5219	242	121	76346	\#\#
14627201 008-DEC-2010	07:22:12C	7670	242	121	76400	60
14627228 008-DEC-2010	07:23:22C	15216	242	121	76300	\#\#
14627259 008-DEC-2010	07:22:36C	2029	242	121	76505	50
14627268 008-DEC-2010	07:23:17C	630	242	121	76501	50
14710380 008-DEC-2010	07:21:23C	4	242	121	76691	\#\#
14710394 008-DEC-2010	07:21:23C	1188	242	121	76690	\#\#
14710411 008-DEC-2010	07:21:23C	1130	242	121	76692	\#\#
14710432 008-DEC-2010	07:22:47C	1262	242	121	76673	10
14711829 008-DEC-2010	07:23:01C	2151	242	121	76607	10
14778935 008-DEC-2010	07:22:07C	3190	242	121	76561	30
14778938 008-DEC-2010	07:23:05C	2824	242	121	76565	30
14778969 008-DEC-2010	07:22:01C	135	242	121	76533	30
14778990 008-DEC-2010	07:21:13C	1745	242	121	76518	30
14778991 008-DEC-2010	07:21:37C	3446	242	121	76515	30
14779013 008-DEC-2010	07:21:19C	1373	242	121	76514	30
14779014 008-DEC-2010	07:21:13C	4120	242	121	76584	30
14845122 008-DEC-2010	07:22:47C	1918	242	121	76939	10
14845130 008-DEC-2010	07:21:30C	1368	242	121	76927	1
14845146 008-DEC-2010	07:21:20C	1104	242	121	76926	1
14845150 008-DEC-2010	07:24:10C	0	242	121	76917	10
14845151 008-DEC-2010	07:21:20C	1468	242	121	76910	1
14845158 008-DEC-2010	07:21:25C	83	242	121	76895	1
14845201 008-DEC-2010	07:21:20C	1359	242	121	76912	1
14845203 008-DEC-2010	07:21:20C	471	242	121	76914	1
14988413 008-DEC-2010	07:21:55C	2577	242	121	76843	40
14988445 008-DEC-2010	07:21:18C	0	242	121	76825	40
15589088 008-DEC-2010	07:23:23C	211	242	121	77074	10
15589107 008-DEC-2010	07:21:19C	2174	242	121	77035	10
15589141 008-DEC-2010	07:23:23C	1992	242	121	77000	10
15589197 008-DEC-2010	07:22:28C	1630	242	121	77032	10
10620748 008-DEC-2010	07:25:17C	2509	242	121	57565	\#\#
10620750 008-DEC-2010	07:23:58C	45	242	121	57498	\#\#
10620755 008-DEC-2010	07:24:14C	1344	242	121	57569	\#\#
10620768 008-DEC-2010	07:25:38C	204	242	121	57551	\#\#
10620771 008-DEC-2010	07:25:38C	5974	242	121	57554	\#\#
10620773 008-DEC-2010	07:22:40C	14048	242	121	57519	40
10620807 008-DEC-2010	07:25:38C	4310	242	121	57552	\#\#

10620835008 -2010	07:25:38C	3796	242	1:	57553	\#\#
10620837 008-DEC-2010	07:22:21C	57398	242	121	57539	60
10620948 008-DEC-2010	07:22:40C	11397	242	121	57567	40
10620961 008-DEC-2010	07:25:59C	898	242	121	57481	\#\#
10620989 008-DEC-2010	07:25:59C	4685	242	121	57194	\#\#
10620991 008-DEC-2010	07:25:59C	5708	242	121	57266	\#\#
10621015 008-DEC-2010	07:21:55C	4068	242	121	57536	60
10621017 008-DEC-2010	07:24:31C	1714	242	121	57116	\#\#
10622367 008-DEC-2010	07:25:11C	3258	242	121	57238	80
10623464 008-DEC-2010	07:22:49C	6065	242	121	57206	\#\#
10623806 008-DEC-2010	07:25:38C	19586	242	121	57566	\#\#
10624862 008-DEC-2010	07:21:03C	1636	242	121	57164	70
10785937 008-DEC-2010	07:24:50C	828	242	121	57291	\#\#
10843473 008-DEC-2010	07:27:40C	475	242	121	57325	20
10849531 008-DEC-2010	07:22:26C	93	242	121	57385	\#\#
11290301 008-DEC-2010	07:26:22C	15828	242	121	57299	\#
11292829 008-DEC-2010	07:25:17C	460	242	121	57369	\#\#
11302566 008-DEC-2010	07:25:38C	438	242	121	57412	\#\#
11303350 008-DEC-2010	07:22:01C	285	242	121	57406	\#\#
11303358 008-DEC-2010	07:24:14C	2995	242	121	57581	\#\#
11303431 008-DEC-2010	07:24:50C	11316	242	121	57348	\#\#
12287714 008-DEC-2010	07:21:18C	60	243	121.5	76250	40
$12287751008-$ DEC-2010	07:21:38C	6307	243	121.5	76203	40
12287925 008-DEC-2010	07:22:02C	711	243	121.5	76489	50
12287947 008-DEC-2010	07:22:02C	9588	243	121.5	76420	50
12288036 008-DEC-2010	07:22:10C	369	243	121.5	76128	\#\#
$14589237008-$ DEC-2010	07:21:23C	521	243	121.5	76968	\#\#
14626993 008-DEC-2010	07:21:12C	648	243	121.5	76377	60
14627050 008-DEC-2010	07:22:23C	0	243	121.5	76353	\#\#
14627247 008-DEC-2010	07:22:32C	12121	243	121.5	76297	\#\#
14627256 008-DEC-2010	07:21:42C	7725	243	121.5	76314	\#\#
14627264 008-DEC-2010	07:22:36C	3558	243	121.5	76446	50
$14710390008-$ DEC-2010	07:21:23C	1533	243	121.5	76686	\#\#
14710409 008-DEC-2010	07:21:01C	668	243	121.5	76685	\#\#
14710426 008-DEC-2010	07:21:17C	1734	243	121.5	76688	\#\#
14710431 008-DEC-2010	07:21:29C	1207	243	121.5	76671	\#\#
14710455 008-DEC-2010	07:21:29C	2251	243	121.5	76672	\#\#
14710472 008-DEC-2010	07:24:28C	31	243	121.5	76624	10
14710490 008-DEC-2010	07:22:22C	1623	243	121.5	76618	10

14711877 008- -2010	07:23:01C	1930	243	121	76605	10
14778934 008-DEC-2010	07:21:13C	36	243	121.3	76577	30
14778996 008-DEC-2010	07:21:37C	4950	243	121.5	76551	30
14779021 008-DEC-2010	07:21:13C	0	243	121.5	76519	30
14845153 008-DEC-2010	07:21:35C	1091	243	121.5	76944	\#\#
14845154 008-DEC-2010	07:21:25C	1443	243	121.5	76932	1
14860271 008-DEC-2010	07:23:57C	719	243	121.5	76877	20
14988373 008-DEC-2010	07:21:55C	1	243	121.5	76844	40
14988386 008-DEC-2010	07:26:21C	2805	243	121.5	76882	20
14988409 008-DEC-2010	07:26:21C	5170	243	121.5	76875	20
14988416 008-DEC-2010	07:24:42C	5158	243	121.5	76800	20
14988447 008-DEC-2010	07:26:05C	4125	243	121.5	76873	20
14988453 008-DEC-2010	07:21:55C	4822	243	121.5	76810	40
15589066 008-DEC-2010	07:21:19C	1167	243	121.5	77025	10
15589085 008-DEC-2010	07:23:23C	2532	243	121.5	77076	10
15589090 008-DEC-2010	07:21:58C	2504	243	121.5	77024	10
15589095 008-DEC-2010	07:21:19C	236	243	121.5	77028	10
15589135 008-DEC-2010	07:23:01C	541	243	121.5	77039	10
10620794 008-DEC-2010	07:23:33C	857	243	121.5	57537	\#\#
10620824 008-DEC-2010	07:24:50C	2971	243	121.5	57113	\#\#
10621006 008-DEC-2010	07:23:47C	0	243	121.5	57550	\#\#
10621039 008-DEC-2010	07:43:50C	27509	243	121.5	57542	\#\#
10622359 008-DEC-2010	07:25:38C	1981	243	121.5	57210	80
10623257 008-DEC-2010	07:23:06C	35	243	121.5	57099	40
10623313 008-DEC-2010	07:23:33C	647	243	121.5	57535	\#\#
10760675 008-DEC-2010	07:22:26C	12296	243	121.5	57540	60
10764404 008-DEC-2010	07:26:38C	2995	243	121.5	57125	50
10773474 008-DEC-2010	07:23:33C	1662	243	121.5	57461	\#\#
10821920 008-DEC-2010	07:23:33C	2517	243	121.5	57155	\#\#
10924726 008-DEC-2010	07:23:06C	682	243	121.5	57322	40
11290300 008-DEC-2010	07:25:59C	12382	243	121.5	57232	\#\#
11303107 008-DEC-2010	07:22:32C	167	243	121.5	57403	\#\#
11303404 008-DEC-2010	07:24:32C	7816	243	121.5	57475	80
11303436 008-DEC-2010	07:23:37C	5656	243	121.5	57370	\#\#
11303441 008-DEC-2010	07:22:20C	6006	243	121.5	57374	\#\#
11314198 008-DEC-2010	07:23:47C	23485	243	121.5	57350	\#\#
11561202 008-DEC-2010	07:22:07C	11183	243	121.5	57173	60
11561203 008-DEC-2010	07:25:59C	6096	243	121.5	57172	\#\#
12287764 008-DEC-2010	07:21:18C	6039	244	122	76178	40

12287787 008- -2010	07:21:44C	2423	244	12	76204	40
12287921 008-DEC-2010	07:24:16C	3346	244	122	76462	50
12287936 008-DEC-2010	07:22:23C	8510	244	122	76494	\#\#
12287985 008-DEC-2010	07:21:38C	4421	244	122	76399	\#\#
12288001 008-DEC-2010	07:21:18C	884	244	122	76233	40
12288005 008-DEC-2010	07:22:33C	83	244	122	76219	\#\#
12288016 008-DEC-2010	07:22:53C	1713	244	122	76150	\#\#
12288019 008-DEC-2010	07:22:53C	7310	244	122	76152	\#\#
12288021 008-DEC-2010	07:22:23C	725	244	122	76160	\#\#
12288031 008-DEC-2010	07:22:33C	3456	244	122	76148	\#\#
14589131 008-DEC-2010	07:21:35C	104	244	122	76962	\#\#
14589247 008-DEC-2010	07:21:43C	1057	244	122	76979	\#\#
14626972 008-DEC-2010	07:22:23C	503	244	122	76357	\#\#
14626978 008-DEC-2010	07:22:23C	785	244	122	76358	\#\#
14627203 008-DEC-2010	07:22:32C	62111	244	122	76316	\#\#
14710247 008-DEC-2010	07:22:22C	594	244	122	76617	10
14710405008 -DEC-2010	07:22:47C	1289	244	122	76674	10
14710435 008-DEC-2010	07:23:43C	1472	244	122	76659	10
14710454 008-DEC-2010	07:24:28C	1049	244	122	76676	10
14710458 008-DEC-2010	07:22:56C	1975	244	122	76632	10
14710462 008-DEC-2010	07:24:28C	1046	244	122	76644	10
14710469 008-DEC-2010	07:24:10C	0	244	122	76622	10
14711875 008-DEC-2010	07:24:10C	632	244	122	76623	10
14778985 008-DEC-2010	07:21:37C	1566	244	122	76596	30
14778998 008-DEC-2010	07:22:21C	1318	244	122	76569	30
14779007 008-DEC-2010	07:21:58C	142	244	122	76525	10
14779011 008-DEC-2010	07:21:19C	174	244	122	76516	30
14845111 008-DEC-2010	07:21:43C	288	244	122	76941	\#\#
14860259 008-DEC-2010	07:23:57C	741	244	122	76880	20
14860272 008-DEC-2010	07:26:05C	2092	244	122	76856	20
14988398 008-DEC-2010	07:26:05C	81	244	122	76883	20
14988455 008-DEC-2010	07:22:27C	4456	244	122	76818	20
14988463 008-DEC-2010	07:21:23C	6576	244	122	76828	40
15589063 008-DEC-2010	07:22:28C	1697	244	122	77019	10
15589069 008-DEC-2010	07:36:52C	1476	244	122	77060	10
15589072 008-DEC-2010	07:22:10C	1805	244	122	77066	10
15589087 008-DEC-2010	07:22:28C	969	244	122	77020	10
15589098 008-DEC-2010	07:21:33C	4740	244	122	77057	10
15589130 008-DEC-2010	07:21:33C	0	244	122	77071	10

15589181008 -2010	07:22:10C	212	244	13	77067	10
15589188 008-DEC-2010	07:21:58C	4578	244	122	77003	10
15589196 008-DEC-2010	07:21:31C	1645	244	122	77014	10
10027629 008-DEC-2010	07:21:56C	1454	244	122	57293	1
10620796 008-DEC-2010	07:24:14C	26622	244	122	57582	\#\#
10620945 008-DEC-2010	07:23:33C	24348	244	122	57485	\#\#
10620976 008-DEC-2010	07:25:11C	1237	244	122	57195	80
10620985 008-DEC-2010	07:23:30C	4489	244	122	57211	80
10622354 008-DEC-2010	07:24:14C	31054	244	122	57538	\#\#
10622379 008-DEC-2010	07:25:24C	10138	244	122	57170	\#\#
10622389 008-DEC-2010	07:22:49C	8641	244	122	57203	\#\#
10623249 008-DEC-2010	07:23:47C	1950	244	122	57564	\#\#
10623316 008-DEC-2010	07:22:37C	3148	244	122	57531	\#\#
10772869 008-DEC-2010	07:25:15C	70245	244	122	57356	10
$10787505008-$ DEC-2010	07:24:56C	199	244	122	57331	10
10848572 008-DEC-2010	07:22:26C	67	244	122	57390	\#\#
10923018 008-DEC-2010	07:25:31C	2346	244	122	57327	50
11300492 008-DEC-2010	07:24:56C	0	244	122	57334	10
11303389 008-DEC-2010	07:25:38C	741	244	122	57477	80
11303393 008-DEC-2010	07:22:26C	1621	244	122	57372	\#\#
11438364 008-DEC-2010	07:26:57C	5484	244	122	57439	50
11561192 008-DEC-2010	07:24:14C	59773	244	122	57157	\#\#
12287713 008-DEC-2010	07:22:32C	10856	245	122.5	76241	\#\#
12287762 008-DEC-2010	07:21:38C	711	245	122.5	76179	40
12287785 008-DEC-2010	07:22:02C	503	245	122.5	76209	40
12287888 008-DEC-2010	07:21:06C	3983	245	122.5	76444	80
12287907 008-DEC-2010	07:21:33C	2935	245	122.5	76471	\#\#
12287954 008-DEC-2010	07:22:36C	2275	245	122.5	76455	50
12287956 008-DEC-2010	07:23:17C	5661	245	122.5	76447	50
12287994 008-DEC-2010	07:22:33C	0	245	122.5	76146	\#\#
12288003 008-DEC-2010	07:22:53C	9082	245	122.5	76153	\#\#
12288004 008-DEC-2010	07:22:53C	5035	245	122.5	76157	\#\#
12288015 008-DEC-2010	07:22:53C	2696	245	122.5	76140	\#\#
12288032 008-DEC-2010	07:22:53C	0	245	122.5	76151	\#\#
14589264 008-DEC-2010	07:21:25C	1002	245	122.5	76985	1
14589265 008-DEC-2010	07:22:47C	81	245	122.5	76935	10
14589269 008-DEC-2010	07:21:43C	2	245	122.5	76980	\#\#
14626971 008-DEC-2010	07:22:23C	1	245	122.5	76360	\#\#
14626986 008-DEC-2010	07:22:23C	7162	245	122.5	76354	\#\#

14626990 008- -2010	07:22:12C	438	245	122	76387	60
14626997 008-DEC-2010	07:22:53C	12312	245	122.5	76397	\#\#
14627008 008-DEC-2010	07:21:33C	5866	245	122.5	76369	\#\#
14627015 008-DEC-2010	07:21:24C	7721	245	122.5	76391	60
14627068 008-DEC-2010	07:22:31C	3907	245	122.5	76419	50
14627226 008-DEC-2010	07:21:06C	1819	245	122.5	76303	80
14627245 008-DEC-2010	07:22:32C	10043	245	122.5	76290	\#\#
14710373 008-DEC-2010	07:24:05C	930	245	122.5	76693	10
14710401 008-DEC-2010	07:22:22C	892	245	122.5	76681	10
14710403 008-DEC-2010	07:24:28C	1180	245	122.5	76641	10
14710449 008-DEC-2010	07:23:31C	177	245	122.5	76637	10
14711805 008-DEC-2010	07:22:22C	0	245	122.5	76614	10
14711839 008-DEC-2010	07:22:22C	1135	245	122.5	76616	10
14711850 008-DEC-2010	07:22:22C	1722	245	122.5	76629	10
14711858 008-DEC-2010	07:21:26C	59	245	122.5	76621	10
14711868 008-DEC-2010	07:22:22C	2445	245	122.5	76628	10
14711872 008-DEC-2010	07:22:22C	0	245	122.5	76615	10
14778931 008-DEC-2010	07:22:01C	1718	245	122.5	76590	30
14778932 008-DEC-2010	07:21:19C	1487	245	122.5	76511	10
14778956 008-DEC-2010	07:22:21C	17	245	122.5	76571	30
14778979 008-DEC-2010	07:21:19C	134	245	122.5	76540	30
14778986 008-DEC-2010	07:21:19C	3049	245	122.5	76513	30
14778987 008-DEC-2010	07:21:13C	1388	245	122.5	76581	30
14778993 008-DEC-2010	07:21:13C	394	245	122.5	76583	30
14779023 008-DEC-2010	07:21:42C	3533	245	122.5	76570	30
14841803 008-DEC-2010	07:24:10C	1162	245	122.5	76904	10
14845069 008-DEC-2010	07:24:41C	777	245	122.5	76934	10
14845090 008-DEC-2010	07:24:10C	1134	245	122.5	76937	10
14845093 008-DEC-2010	07:21:25C	434	245	122.5	76913	1
14845097 008-DEC-2010	07:24:10C	46	245	122.5	76901	10
14845168 008-DEC-2010	07:22:47C	1187	245	122.5	76940	10
14845208 008-DEC-2010	07:21:55C	362	245	122.5	76905	\#\#
14860246 008-DEC-2010	07:23:57C	2862	245	122.5	76879	20
14860265 008-DEC-2010	07:21:15C	6851	245	122.5	76864	20
14892471 008-DEC-2010	07:22:01C	1885	245	122.5	76536	30
14988367 008-DEC-2010	07:25:11C	515	245	122.5	76889	20
14988427 008-DEC-2010	07:24:42C	86	245	122.5	76797	20
14988448 008-DEC-2010	07:24:42C	38	245	122.5	76816	20
14988459 008-DEC-2010	07:21:27C	1858	245	122.5	76805	20

15589070 008-' 2010	07:23:23C	1755	245	122	77075	10
15589074 008-DEC-2010	07:22:10C	1717	245	122.3	77065	10
15589097 008-DEC-2010	07:21:19C	0	245	122.5	77027	10
15589129 008-DEC-2010	07:22:10C	1108	245	122.5	77002	10
15589138 008-DEC-2010	07:22:37C	146	245	122.5	76990	10
15589144 008-DEC-2010	07:37:03C	575	245	122.5	77058	10
15589190 008-DEC-2010	07:21:31C	43	245	122.5	77015	10
10620769 008-DEC-2010	07:28:21C	0	245	122.5	57501	20
10620798 008-DEC-2010	07:23:20C	135	245	122.5	57587	\#\#
10620964 008-DEC-2010	07:24:42C	439	245	122.5	57241	\#\#
10623290 008-DEC-2010	07:22:55C	14322	245	122.5	57529	90
10638650 008-DEC-2010	07:24:34C	371	245	122.5	57460	\#\#
10765608 008-DEC-2010	07:21:06C	860	245	122.5	57482	90
10767448 008-DEC-2010	07:24:14C	9748	245	122.5	57486	\#\#
10772692 008-DEC-2010	07:24:56C	0	245	122.5	57333	10
10772913 008-DEC-2010	07:24:14C	12940	245	122.5	57361	\#\#
10828912 008-DEC-2010	07:23:24C	4491	245	122.5	57101	30
10845087 008-DEC-2010	07:25:39C	162	245	122.5	57332	10
11299475 008-DEC-2010	07:25:11C	3641	245	122.5	57278	80
11302156 008-DEC-2010	07:22:14C	55	245	122.5	57389	\#\#
11303394 008-DEC-2010	07:24:56C	12	245	122.5	57357	10
11303410 008-DEC-2010	07:23:49C	7223	245	122.5	57324	30
11438401 008-DEC-2010	07:25:11C	7631	245	122.5	57395	\#\#
12287732 008-DEC-2010	07:21:44C	14922	246	123	76262	40
12287749 008-DEC-2010	07:21:23C	4633	246	123	76177	40
12287760 008-DEC-2010	07:22:02C	55	246	123	76211	40
12287786 008-DEC-2010	07:21:55C	3293	246	123	76212	40
12287893 008-DEC-2010	07:22:23C	2279	246	123	76495	\#\#
12287929 008-DEC-2010	07:21:40C	8490	246	123	76473	\#\#
12287934 008-DEC-2010	07:21:06C	15984	246	123	76312	80
12287943 008-DEC-2010	07:22:12C	7039	246	123	76442	80
12287973 008-DEC-2010	07:24:16C	11581	246	123	76463	50
12287975 008-DEC-2010	07:22:12C	18697	246	123	76443	80
12287979 008-DEC-2010	07:21:09C	12450	246	123	76430	50
12287980 008-DEC-2010	07:21:09C	58	246	123	76429	50
14589135 008-DEC-2010	07:21:29C	30	246	123	76956	\#\#
14589234 008-DEC-2010	07:22:37C	471	246	123	76984	\#\#
14589262 008-DEC-2010	07:24:24C	1326	246	123	76936	10
14589306 008-DEC-2010	07:24:10C	1461	246	123	76957	10

14710424 008-Г 2010	07:21:17C	872	246	12^{-}	76679	\#\#
14710428 008-DEC-2010	07:23:41C	792	246	123	76658	10
14710440 008-DEC-2010	07:22:47C	1166	246	123	76675	10
14710446 008-DEC-2010	07:22:47C	754	246	123	76638	10
14710452 008-DEC-2010	07:23:23C	991	246	123	76627	10
14710474 008-DEC-2010	07:23:01C	1167	246	123	76612	10
14711795 008-DEC-2010	07:24:41C	1564	246	123	76625	10
14711840 008-DEC-2010	07:22:22C	1162	246	123	76626	10
14711870 008-DEC-2010	07:23:01C	1014	246	123	76610	10
14778936 008-DEC-2010	07:21:13C	396	246	123	76579	30
14778944 008-DEC-2010	07:22:09C	2951	246	123	76568	30
14778949 008-DEC-2010	07:21:19C	1872	246	123	76538	30
14778961 008-DEC-2010	07:23:05C	1250	246	123	76524	30
14778968 008-DEC-2010	07:21:37C	173	246	123	76539	30
14778974 008-DEC-2010	07:22:01C	2535	246	123	76558	30
14778978 008-DEC-2010	07:22:01C	3659	246	123	76534	30
14778984 008-DEC-2010	07:21:19C	2742	246	123	76547	30
14778989 008-DEC-2010	07:21:19C	2878	246	123	76576	10
14778992 008-DEC-2010	07:22:01C	2148	246	123	76535	30
14779025 008-DEC-2010	07:22:01C	128	246	123	76575	30
14845163 008-DEC-2010	07:21:25C	192	246	123	76915	1
14845173 008-DEC-2010	07:24:10C	0	246	123	76902	10
14845182 008-DEC-2010	07:21:48C	612	246	123	76906	\#\#
14845186 008-DEC-2010	07:21:30C	0	246	123	76893	1
14845214 008-DEC-2010	07:24:10C	1209	246	123	76938	10
14846860 008-DEC-2010	07:21:19C	526	246	123	76510	10
14860256 008-DEC-2010	07:22:27C	495	246	123	76867	30
14988375 008-DEC-2010	07:43:37C	1549	246	123	76886	20
14988390 008-DEC-2010	07:26:21C	189	246	123	76884	20
14988426 008-DEC-2010	07:22:54C	3481	246	123	76804	20
14988429 008-DEC-2010	07:22:54C	2489	246	123	76820	20
15589049 008-DEC-2010	07:36:52C	7	246	123	77061	10
15589067 008-DEC-2010	07:23:23C	71	246	123	77048	10
15589092 008-DEC-2010	07:22:28C	600	246	123	77029	10
15589099 008-DEC-2010	07:21:31C	2293	246	123	77036	10
15589100 008-DEC-2010	07:21:58C	1788	246	123	76995	10
15589104 008-DEC-2010	07:21:31C	5078	246	123	77059	10
15589115 008-DEC-2010	07:22:28C	2002	246	123	77017	10
15589118 008-DEC-2010	07:22:28C	44	246	123	77018	10

15589137 008-' -2010	07:22:28C	220	246	12^{-}	76997	10
15589140 008-Dtc-2010	07:21:58C	175	246	123	76999	10
15589145 008-DEC-2010	07:21:33C	1832	246	123	77007	10
15589184 008-DEC-2010	07:21:31C	1479	246	123	77013	10
10620764 008-DEC-2010	07:25:14C	0	246	123	57514	10
10620826 008-DEC-2010	07:24:14C	4915	246	123	57580	\#\#
10620942 008-DEC-2010	07:24:14C	12447	246	123	57296	\#\#
10621007 008-DEC-2010	07:23:58C	68	246	123	57274	\#\#
10621012 008-DEC-2010	07:26:57C	8794	246	123	57228	50
10621033 008-DEC-2010	07:25:14C	1	246	123	57512	10
10622368 008-DEC-2010	07:25:40C	870	246	123	57201	80
10622388 008-DEC-2010	07:24:34C	2089	246	123	57169	\#\#
10623259 008-DEC-2010	07:25:14C	0	246	123	57496	10
10623332 008-DEC-2010	07:22:55C	4027	246	123	57530	90
10624866 008-DEC-2010	07:24:14C	3748	246	123	57483	\#\#
10624878 008-DEC-2010	07:24:14C	7617	246	123	57329	\#\#
10630883 008-DEC-2010	07:24:14C	2307	246	123	57366	\#\#
10633160 008-DEC-2010	07:24:34C	185	246	123	57167	\#\#
10635857 008-DEC-2010	07:25:40C	1066	246	123	57213	80
10757766 008-DEC-2010	07:26:22C	11446	246	123	57192	\#\#
10824679 008-DEC-2010	07:24:42C	11025	246	123	57239	\#\#
10846326 008-DEC-2010	07:23:06C	68633	246	123	57307	30
10853493 008-DEC-2010	07:25:14C	9916	246	123	57289	10
10920720 008-DEC-2010	07:24:34C	3594	246	123	57364	\#\#
11303349 008-DEC-2010	07:22:14C	90	246	123	57383	\#\#
11303356 008-DEC-2010	07:26:57C	1310	246	123	57442	50
11303361 008-DEC-2010	07:22:32C	141	246	123	57404	\#\#
11303370 008-DEC-2010	07:26:57C	2741	246	123	57440	50
11561193 008-DEC-2010	07:24:49C	6655	246	123	57129	50
11561200 008-DEC-2010	07:24:34C	5075	246	123	57189	\#\#
12287693 008-DEC-2010	07:22:32C	510	247	123.5	76257	\#\#
12287734 008-DEC-2010	07:22:59C	7020	247	123.5	76259	\#\#
12287741 008-DEC-2010	07:22:10C	2649	247	123.5	76220	\#\#
12287768 008-DEC-2010	07:21:38C	5715	247	123.5	76168	\#\#
12287940 008-DEC-2010	07:22:31C	12067	247	123.5	76449	50
12287945 008-DEC-2010	07:22:31C	535	247	123.5	76418	50
14589104 008-DEC-2010	07:24:10C	3	247	123.5	76959	10
14589206 008-DEC-2010	07:21:30C	1429	247	123.5	76986	1
14589209 008-DEC-2010	07:21:35C	454	247	123.5	76964	\#\#

14589228 008- 2010	07:21:20C	74	247	123.	76916	1
14589230 008-DEC-2010	07:21:35C	1104	247	123.5	76978	\#\#
14589270 008-DEC-2010	07:21:17C	456	247	123.5	76952	\#\#
14627016 008-DEC-2010	07:21:24C	154	247	123.5	76386	60
14627027 008-DEC-2010	07:21:06C	15700	247	123.5	76328	60
14627060 008-DEC-2010	07:21:12C	7243	247	123.5	76326	60
14710227 008-DEC-2010	07:23:01C	934	247	123.5	76608	10
14710372 008-DEC-2010	07:22:22C	718	247	123.5	76668	10
14710378 008-DEC-2010	07:21:40C	416	247	123.5	76700	10
14710381 008-DEC-2010	07:39:50C	3389	247	123.5	76647	10
14710388 008-DEC-2010	07:23:43C	948	247	123.5	76695	10
14710389 008-DEC-2010	07:22:22C	20	247	123.5	76683	10
14710391 008-DEC-2010	07:23:43C	399	247	123.5	76657	10
14710398 008-DEC-2010	07:22:22C	0	247	123.5	76630	10
14710414 008-DEC-2010	07:22:47C	23	247	123.5	76682	10
14710422 008-DEC-2010	07:22:47C	1542	247	123.5	76667	10
14710427 008-DEC-2010	07:53:52C	258	247	123.5	76684	10
14710444 008-DEC-2010	07:38:12C	764	247	123.5	76634	10
14710456 008-DEC-2010	07:52:50C	526	247	123.5	76635	10
14710459 008-DEC-2010	07:23:41C	1562	247	123.5	76609	10
14711864 008-DEC-2010	07:23:01C	20	247	123.5	76606	10
14778951 008-DEC-2010	07:22:01C	58	247	123.5	76553	30
14778965 008-DEC-2010	07:21:19C	0	247	123.5	76589	30
14778980 008-DEC-2010	07:22:01C	2080	247	123.5	76573	30
14845092 008-DEC-2010	07:21:35C	297	247	123.5	76943	\#\#
14845096 008-DEC-2010	07:21:25C	582	247	123.5	76930	1
14845148 008-DEC-2010	07:22:47C	115	247	123.5	76933	10
14845149 008-DEC-2010	07:21:30C	1155	247	123.5	76925	1
14846917 008-DEC-2010	07:22:04C	1044	247	123.5	76509	10
14860261 008-DEC-2010	07:21:56C	3766	247	123.5	76868	30
14860266 008-DEC-2010	07:22:27C	1529	247	123.5	76866	30
14988377 008-DEC-2010	07:21:15C	2912	247	123.5	76852	20
14988420 008-DEC-2010	07:22:54C	1333	247	123.5	76801	20
14988421 008-DEC-2010	07:21:55C	180	247	123.5	76811	40
14988437 008-DEC-2010	07:22:27C	2649	247	123.5	76802	20
14988439 008-DEC-2010	07:22:54C	2331	247	123.5	76817	20
14988461 008-DEC-2010	07:21:56C	1561	247	123.5	76835	30
15589050 008-DEC-2010	07:21:19C	180	247	123.5	77070	10
15589061 008-DEC-2010	07:23:43C	647	247	123.5	77046	10

15589068 008-' 2010	07:23:18C	25	247	123.	77072	10
15589083 008-DEC-2010	07:22:28C	214	247	123.5	77083	10
15589101 008-DEC-2010	07:23:23C	71	247	123.5	76991	10
15589110 008-DEC-2010	07:21:58C	383	247	123.5	77069	10
15589114 008-DEC-2010	07:21:58C	174	247	123.5	77043	10
15589121 008-DEC-2010	07:21:58C	0	247	123.5	77008	10
15589125 008-DEC-2010	07:21:58C	14	247	123.5	77006	10
15589126 008-DEC-2010	07:23:41C	419	247	123.5	77037	10
15589139 008-DEC-2010	07:23:23C	881	247	123.5	76992	10
15589143 008-DEC-2010	07:22:04C	1275	247	123.5	77010	10
15589178 008-DEC-2010	07:22:04C	34	247	123.5	77009	10
10620786 008-DEC-2010	07:24:14C	8099	247	123.5	57484	\#\#
10844994 008-DEC-2010	07:23:55C	11665	247	123.5	57320	40
10846325 008-DEC-2010	07:27:04C	392	247	123.5	57308	20
11300074 008-DEC-2010	07:22:08C	105	247	123.5	57373	1
11303345 008-DEC-2010	07:22:34C	0	247	123.5	57462	60
11303397 008-DEC-2010	07:25:01C	13574	247	123.5	57396	\#\#
11303406 008-DEC-2010	07:22:32C	331	247	123.5	57405	\#\#
11303444 008-DEC-2010	07:21:31C	49	247	123.5	57363	60
11303468 008-DEC-2010	07:23:47C	239	247	123.5	57380	\#\#
11561177 008-DEC-2010	07:23:55C	12980	247	123.5	57107	40
11561220 008-DEC-2010	07:23:55C	253	247	123.5	57142	40
12287769 008-DEC-2010	07:21:15C	4211	248	124	76206	20
12287911 008-DEC-2010	07:24:16C	5744	248	124	76464	50
12287933 008-DEC-2010	07:21:09C	8238	248	124	76415	50
12287941 008-DEC-2010	07:22:31C	8472	248	124	76451	50
12287944 008-DEC-2010	07:22:31C	10245	248	124	76417	50
12287955 008-DEC-2010	07:22:06C	3054	248	124	76474	\#\#
12287957 008-DEC-2010	07:22:10C	8871	248	124	76407	\#\#
12287972 008-DEC-2010	07:22:31C	1661	248	124	76452	50
12288002 008-DEC-2010	07:22:33C	91	248	124	76147	\#\#
14589260 008-DEC-2010	07:21:23C	2	248	124	76967	\#\#
14589267 008-DEC-2010	07:21:48C	1022	248	124	76982	\#\#
14626982 008-DEC-2010	07:22:10C	1548	248	124	76405	\#\#
14627025 008-DEC-2010	07:21:35C	12617	248	124	76305	80
14627239 008-DEC-2010	07:21:35C	8370	248	124	76302	80
14710376 008-DEC-2010	07:21:03C	18	248	124	76697	10
14710387 008-DEC-2010	07:24:10C	1013	248	124	76639	10
14710395 008-DEC-2010	07:21:23C	56	248	124	76678	\#\#

14710406 008-: 2010	07:22:47C	855	248	12	76640	10
14710448 008-DEC-2010	07:23:41C	396	248	124	76664	10
14710451 008-DEC-2010	07:22:47C	1721	248	124	76666	10
14710453 008-DEC-2010	07:24:10C	324	248	124	76643	10
14710457 008-DEC-2010	07:38:12C	1319	248	124	76636	10
14711865 008-DEC-2010	07:23:41C	1506	248	124	76611	10
14778942 008-DEC-2010	07:22:22C	3537	248	124	76542	10
14778950 008-DEC-2010	07:23:05C	468	248	124	76521	30
14778954 008-DEC-2010	07:22:09C	2608	248	124	76522	30
14778966 008-DEC-2010	07:23:05C	305	248	124	76580	30
14779000 008-DEC-2010	07:22:27C	4374	248	124	76604	30
14779015 008-DEC-2010	07:53:01C	335	248	124	76526	10
14779022 008-DEC-2010	07:22:28C	1972	248	124	76543	10
14779028 008-DEC-2010	07:22:01C	1044	248	124	76556	30
14779029 008-DEC-2010	07:21:31C	1091	248	124	76541	10
14845094 008-DEC-2010	07:21:30C	1449	248	124	76929	1
14845095 008-DEC-2010	07:21:48C	111	248	124	76908	\#\#
14845144 008-DEC-2010	07:21:30C	733	248	124	76911	1
14845170 008-DEC-2010	07:22:47C	12	248	124	76903	10
14988374 008-DEC-2010	07:22:54C	1216	248	124	76848	20
14988383 008-DEC-2010	07:22:54C	2059	248	124	76846	20
14988428 008-DEC-2010	07:23:07C	3672	248	124	76807	20
14988434 008-DEC-2010	07:24:26C	4389	248	124	76798	20
15589106 008-DEC-2010	07:22:28C	428	248	124	77030	10
15589111 008-DEC-2010	07:22:28C	744	248	124	77031	10
$15589116008-$ DEC-2010	07:21:58C	277	248	124	76996	10
15589120 008-DEC-2010	07:23:23C	227	248	124	76989	10
15589127 008-DEC-2010	07:21:33C	0	248	124	77026	10
15589128 008-DEC-2010	07:21:31C	1532	248	124	77011	10
15589133 008-DEC-2010	07:21:58C	72	248	124	76994	10
15589136 008-DEC-2010	07:21:58C	61	248	124	76993	10
15589162 008-DEC-2010	07:21:58C	95	248	124	77005	10
15589175 008-DEC-2010	07:21:31C	355	248	124	77016	10
10620792 008-DEC-2010	07:23:30C	6745	248	124	57214	80
10621010 008-DEC-2010	07:27:18C	3265	248	124	57260	50
10622344 008-DEC-2010	07:26:57C	6943	248	124	57227	50
10622357 008-DEC-2010	07:27:18C	4018	248	124	57262	50
10920828 008-DEC-2010	07:25:56C	2275	248	124	57340	\#\#
11303375 008-DEC-2010	07:22:14C	84	248	124	57388	\#\#

11303379 008- -2010	07:23:47C	5322	248	12	57379	\#\#
11303438 008-DEC-2010	07:42:35C	301	248	124	57365	\#\#
11561184 008-DEC-2010	07:24:01C	3532	248	124	57171	40
12287689 008-DEC-2010	07:22:32C	7746	249	124.5	76298	\#\#
12287938 008-DEC-2010	07:24:30C	15185	249	124.5	76468	50
14589166 008-DEC-2010	07:21:35C	4	249	124.5	76977	\#\#
14589242 008-DEC-2010	07:21:48C	0	249	124.5	76983	\#\#
14627033 008-DEC-2010	07:22:32C	0	249	124.5	76299	\#\#
14710383 008-DEC-2010	07:22:47C	870	249	124.5	76696	10
14710397 008-DEC-2010	07:22:22C	20	249	124.5	76660	10
14778940 008-DEC-2010	07:21:31C	219	249	124.5	76512	10
14778946 008-DEC-2010	07:21:37C	254	249	124.5	76517	30
14778953 008-DEC-2010	07:22:27C	2817	249	124.5	76603	30
14778955 008-DEC-2010	07:22:09C	736	249	124.5	76582	30
14778958 008-DEC-2010	07:22:21C	472	249	124.5	76572	30
14778967 008-DEC-2010	07:21:19C	1763	249	124.5	76550	30
14778973 008-DEC-2010	07:21:13C	1569	249	124.5	76566	30
14778982 008-DEC-2010	07:22:28C	0	249	124.5	76544	10
14778994 008-DEC-2010	07:21:56C	3217	249	124.5	76588	30
14778997 008-DEC-2010	07:22:01C	1527	249	124.5	76537	30
14778999 008-DEC-2010	07:22:01C	2417	249	124.5	76591	30
14779017 008-DEC-2010	07:22:01C	644	249	124.5	76592	30
14779019 008-DEC-2010	07:23:05C	159	249	124.5	76523	30
14845089 008-DEC-2010	07:22:37C	27	249	124.5	76981	\#\#
14845128 008-DEC-2010	07:22:37C	31	249	124.5	76942	\#\#
14860254 008-DEC-2010	07:21:15C	3529	249	124.5	76863	20
14860263 008-DEC-2010	07:22:27C	2971	249	124.5	76865	30
14988418 008-DEC-2010	07:24:26C	3139	249	124.5	76799	20
14988460 008-DEC-2010	07:22:27C	1743	249	124.5	76819	20
15589053 008-DEC-2010	07:21:31C	540	249	124.5	77084	10
15589073 008-DEC-2010	07:21:31C	1050	249	124.5	77077	10
15589076 008-DEC-2010	07:37:03C	18	249	124.5	77062	10
15589079 008-DEC-2010	07:21:31C	85	249	124.5	77082	10
15589084 008-DEC-2010	07:37:03C	825	249	124.5	77063	10
15589086 008-DEC-2010	07:21:31C	1649	249	124.5	77081	10
15589096 008-DEC-2010	07:23:23C	886	249	124.5	77078	10
15589103 008-DEC-2010	07:21:58C	881	249	124.5	77079	10
15589134 008-DEC-2010	07:38:00C	2708	249	124.5	77001	10
15589166 008-DEC-2010	07:21:31C	17	249	124.5	77012	10

10620956 008- 2010	07:23:01C	346	249	124	57294	1
10924831 008-DEC-2010	07:25:38C	1502	249	124.3	57342	\#\#
12287902 008-DEC-2010	07:24:30C	1945	250	125	76459	50
12287922 008-DEC-2010	07:22:31C	5875	250	125	76490	50
12287930 008-DEC-2010	07:24:30C	1009	250	125	76457	50
12287931 008-DEC-2010	07:24:16C	2020	250	125	76460	50
12287964 008-DEC-2010	07:23:17C	19566	250	125	76453	50
12287967 008-DEC-2010	07:22:31C	9199	250	125	76432	50
14589241 008-DEC-2010	07:21:17C	984	250	125	76950	\#\#
14627058 008-DEC-2010	07:21:12C	402	250	125	76330	60
14710392 008-DEC-2010	07:36:46C	602	250	125	76698	10
14710416 008-DEC-2010	07:24:11C	155	250	125	76694	10
14710425 008-DEC-2010	07:39:50C	105	250	125	76665	10
14778952 008-DEC-2010	07:22:27C	2760	250	125	76586	30
14778960 008-DEC-2010	07:21:19C	1665	250	125	76548	30
14778963 008-DEC-2010	07:21:19C	62	250	125	76549	30
14778975 008-DEC-2010	07:21:37C	2752	250	125	76546	30
14778976 008-DEC-2010	07:21:19C	3975	250	125	76545	30
14778981 008-DEC-2010	07:22:34C	1854	250	125	76587	30
14779002 008-DEC-2010	07:21:37C	0	250	125	76531	30
14779010 008-DEC-2010	07:21:19C	3118	250	125	76595	30
14779016 008-DEC-2010	07:22:09C	0	250	125	76567	30
14860252 008-DEC-2010	07:21:15C	1402	250	125	76861	20
14860267 008-DEC-2010	07:21:15C	3891	250	125	76862	20
14888858 008-DEC-2010	07:21:13C	2640	250	125	76602	30
14988391 008-DEC-2010	07:21:15C	3404	250	125	76850	20
14988395 008-DEC-2010	07:25:41C	3745	250	125	76881	20
14988404 008-DEC-2010	07:24:00C	2205	250	125	76845	20
14988411 008-DEC-2010	07:21:15C	107	250	125	76849	20
14988430 008-DEC-2010	07:22:07C	568	250	125	76803	20
14988436 008-DEC-2010	07:22:02C	3647	250	125	76809	40
11303435 008-DEC-2010	07:26:44C	3269	250	125	57346	20
12287915 008-DEC-2010	07:22:31C	151	251	125.5	76492	50
12287923 008-DEC-2010	07:22:02C	641	251	125.5	76414	50
12287970 008-DEC-2010	07:21:40C	7430	251	125.5	76476	\#\#
12288017 008-DEC-2010	07:21:27C	2549	251	125.5	76129	20
14626788 008-DEC-2010	07:22:02C	12647	251	125.5	76413	50
14778930 008-DEC-2010	07:21:19C	39	251	125.5	76555	30
14778971 008-DEC-2010	07:22:27C	755	251	125.5	76585	30

14860276 008- 2010	07:24:00C	3995	251	125	$\nabla 6847$	20
14889744 008-DEC-2010	07:23:05C	3772	251	125.6	76601	30
14988401 008-DEC-2010	07:21:15C	319	251	125.5	76890	20
14988454 008-DEC-2010	07:24:00C	248	251	125.5	76815	20
15589113 008-DEC-2010	07:37:49C	1927	251	125.5	77004	10
10920469 008-DEC-2010	07:27:23C	110	251	125.5	57310	20
11303378 008-DEC-2010	07:24:49C	1657	251	125.5	57368	50
11441157 008-DEC-2010	07:25:38C	10998	251	125.5	57226	80
11561233 008-DEC-2010	07:23:18C	66	251	125.5	57158	30
12287896 008-DEC-2010	07:24:16C	17801	252	126	76485	50
14589257 008-DEC-2010	07:21:17C	500	252	126	76949	\#\#
10760313 008-DEC-2010	07:24:49C	618	252	126	57562	50
11303383 008-DEC-2010	07:24:49C	12194	252	126	57367	50
11739591 008-DEC-2010	07:25:38C	1948	252	126	57225	80
12287917 008-DEC-2010	07:24:30C	3652	253	126.5	76467	50
14589266 008-DEC-2010	07:21:17C	867	253	126.5	76951	\#\#
14589308 008-DEC-2010	07:21:17C	0	253	126.5	76953	\#\#
14778933 008-DEC-2010	07:21:37C	1254	253	126.5	76520	30
10787456 008-DEC-2010	07:25:38C	1583	253	126.5	57223	80
11303390 008-DEC-2010	07:27:32C	4377	253	126.5	57414	50
10623282 008-DEC-2010	07:41:48C	13269	254	127	57534	\#\#
12287926 008-DEC-2010	07:23:59C	3690	255	127.5	76466	50
12287958 008-DEC-2010	07:23:59C	5191	255	127.5	76465	50
14778959 008-DEC-2010	07:21:19C	1450	255	127.5	76552	30
14778937 008-DEC-2010	07:21:19C	1088	256	128	76560	30
14779001 008-DEC-2010	07:22:47C	0	256	128	76574	30

